Data Science Research Group

Featured story

person's hands on a laptop keyboard with blue background with binary numbers

Research interests

The research Interests of the Data Science research group are listed by the interests of individual members.

Anna Jordanous’s research areas include computational creativity and its evaluation, music informatics, digital humanities, knowledge modelling, Semantic Web, and natural language processing. Primarily she works with computational creativity – the modelling, simulation or replication of creative activities and behaviour using computational means – with a focus on the question of how to evaluate claims of computer software being creative. As well as writing creative software to improvise music, Dr Jordanous has contributed a highly-cited standardised procedure for evaluating creative systems. She also uses music information retrieval and natural language processing in her work.

Palani Ramaswamy’s research area is on biological signal processing, mainly signals from the brain and heart. He studies these signals (such as EEG, PCG and ECG) for several applications: brain-computer interface, biometrics, electrophysiological analysis, cardiovascular disease diagnosis and stress management. Tools like advanced signal processing and machine learning (such as neural networks and genetic algorithms) are utilised. Further, he also process signals for various engineering and computer science applications.

Alex Freitas’ research interests involve the following areas: Data Mining and Knowledge Discovery, focusing on developing new classification methods that produce interpretable models (e.g. decision trees, if-then rules and Bayesian network classifiers); Applications of classification methods in the Biology of Ageing, Protein Function Prediction and Pharmacokinetics; Biologically-inspired algorithms: mainly Evolutionary Algorithms and Ant Colony Optimisation.

Caroline Li’s main area of research is in signal processing and its applications in body sensors, including: EEG-based biomarker discovery for brain diseases, neurofeedback applications for medical and sport applications and brain computer interface. Also she is working on signal processing methods such as adaptive filtering, tracking methods and machine learning methods for pattern classification.

Howard Bowman is interested in how the mind emerges from the brain to generate a spectrum of cognitive capacities. In this respect, he undertakes work focusing on the following capacities: perception, consciousness, attention, language, emotions and decision-making. He studies these topics using a mixture of methods, which includes behavioural and electrophysiological (EEG) experimentation and connectionist and symbolic modelling. Study of these topics is especially timely, since modern brain imaging techniques are beginning to reveal the physical mechanisms from which cognition emerges, thus, enabling biologically plausible models of cognition to be constructed. In this area he is currently working on the following topics: emotions, salience sensitive control of human attention and computational modelling; reinforcement learning investigations of human decision making; using neural networks to model how subliminal visual stimuli can initiate motor responses; and formal methods in HCI and cognition.

Fernando Otero’s research interests include Data Mining and Knowledge Discovery, in particular classification and regression – focusing on the creation of interpretable models – and more recently clustering. He also works on bio-inspired algorithms, mainly ant colony optimization and genetic programming for applications in bioinformatics (e.g. protein function prediction) and financial forecasting and large-scale data mining (“Big Data”).

Matteo Migliavacca works in networked systems, with an emphasis on system building and evaluation. His research interests include parallel data processing, including stream processing and publish subscribe middleware in large scale and cloud scenarios. Lately he has been involved in security, including secure event processing, runtime taint tracking and information flow control in a variety of languages from Java, to PHP and Erlang. He is currently collaborating with the LSDS group at Imperial College on Stateful Big Data processing (SEEP project) and Network as a Service (NaaS project) also in collaboration with Microsoft Research.

Frank Wang’s research interest includes Future Computing, Green Computing (via memristor), Grid/Cloud Computing, Biologically-inspired Computing, Quantum Computing/Communication, Data Storage & Data Communication, and Data Mining and Data Warehousing.

Daniel Soria’s research interests lay in the multi-disciplinary area of applied computer science for real-word applications, especially in biomedical domains. He has expertise in data mining and machine learning applications, from pattern identification to supervised learning. Recently, he started investigating prediction models in highly imbalanced data using medical records from the UK Biobank.

Tomas Petricek is interested in finding easier and more accessible ways of thinking about programming. To do so, he combines technical work on programming languages and tools with research into history and philosophy of science. On the technical side, he is interested in unorthodox ideas in programming language design such as integrating external data into type systems (type providers) or representing programs not as code, but as a sequence of interactions. On the philosophical side, he has been exploring the surprisingly rich nature of programming concepts such as types, monads and errors from the perspective of philosophy of science. He’s also interested in finding and recovering good ideas in the history of programming that got lost for one reason or another!

Dominique Chu’s research interest centres around stochastic models for biology, molecular computing and neural networks. His current main research interest is information processing in biological cells. In particular, he is interested in how stochastic fluctuations limit the ability of the cell to change its internal states in response to changing environments. A consequence of noise seems to be that the cell has to use energy in order to be able to react rapidly and accurately to changes. This results in trade-offs between the metabolic expense of a network and its efficiency.

Chee Siang (Jim) Ang’s main research area is in digital health, where he investigates, designs and develops new technologies which can provide treatment and (self-) management of health conditions, through effective prevention, early intervention, personalised treatment and continuous monitoring of the conditions. He is particularly interested in immersive media technologies (virtual or augmented reality), computer games and sensing technologies.

Christos Efstratiou’s main research interest lies in the general area of Ubiquitous Computing, with particular emphasis on the challenges of building multi-sensory computational systems to understand real-world human behaviour. His work involves the development of techniques to detect and model human activities using wearable or mobile sensing, IoT (Internet of Things) technologies, and passively captured human activity datasets.