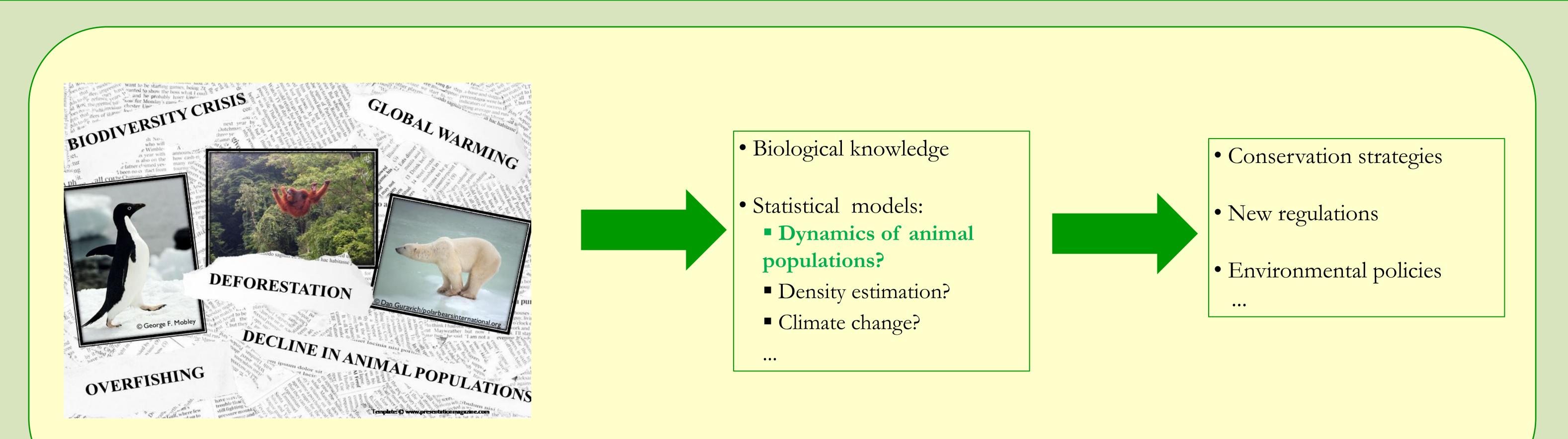


Modelling the dynamics of animal populations: does the model fit?


Anita Jeyam, University of Kent, UK

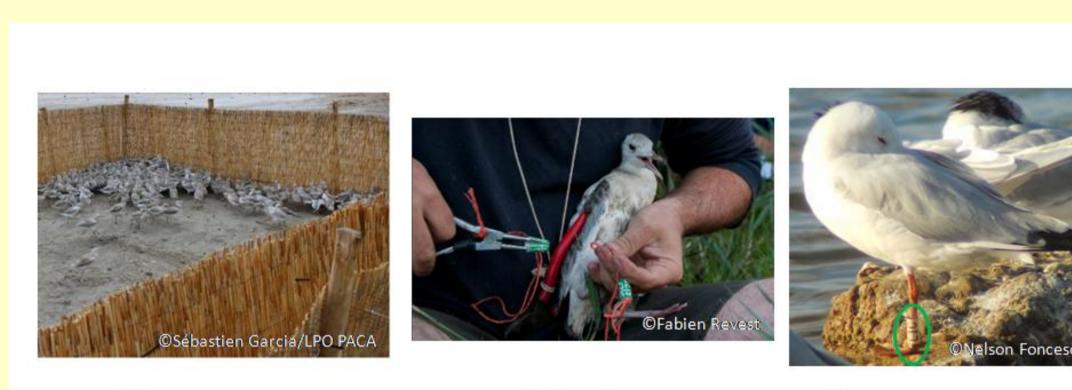
R.S. McCrea¹ and R. Pradel²

aj305@kent.ac.uk

¹National Centre for Statistical Ecology, School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, Kent, CT2 7NF, UK. ²Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Montpellier, France.

Environmental issues

Understanding their impact


Decision making

I. Capture-Mark-Recapture (CMR)

- How to monitor animals?
 - Camera trapping
 - Genetic sampling

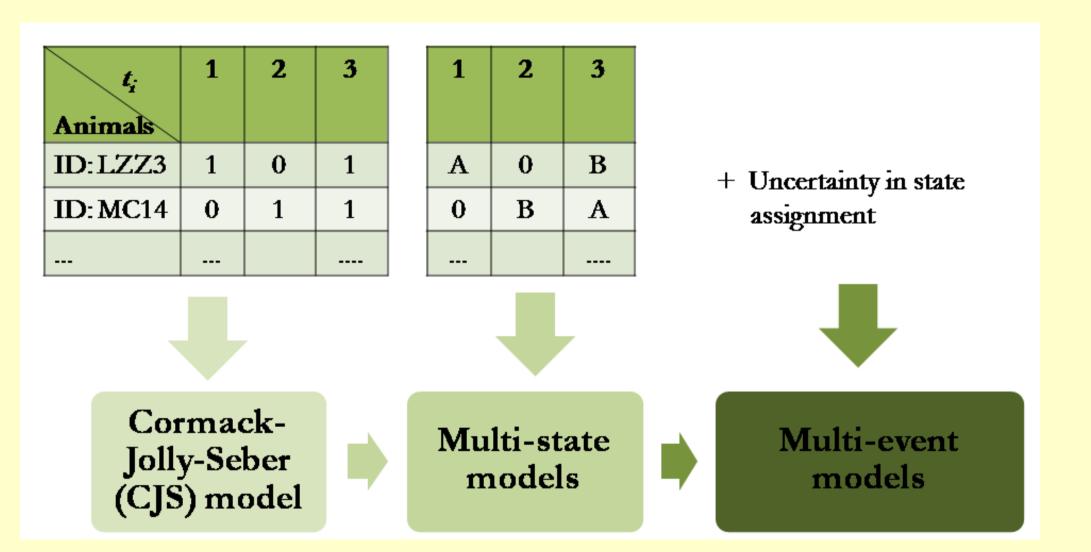
....

Capture-Mark-Recapture

III. How to assess goodness-of-fit (GOF) for CMR models?

- Absolute omnibus test statistic:
 - Is the distance between observed values and expected values under tested model too large?

$$\chi^{2} = \sum_{i=1}^{k} \frac{(Observed - Expected)^{2}}{Expected}$$


- Indicator of inadequate model fit but no further information
- Informative goodness-of-fit tests:
 - Statistical models are based on assumptions
 - Diagnostic GOF tests: specific to model assumptions and provide biological interpretation

Capture - Mark - Recapture (Unique ID) /Resighting

Capture-Mark-Recapture of slender-billed gulls (Chroicocephalus genei)

• Different levels of information collected

- Basic information coding: 0=not seen/1=seen
- Record of state in which animal is seen: (e.g. colony, health status, breeding status).
- Information code: 0=not seen/A=seen in state A...
- State information uncertain: e.g. : health status determined solely by observation of animal's behaviour

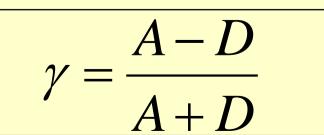
IV. Diagnostic GOF for the CJS model

• Main assumptions: equal capture probabilities and survival probabilities for all animals, at each capture occasion.

- Existing diagnostic GOF tests
 (Pradel et al. (2005), *Animal Biodiversity and Conservation*, 28(2), 189-204.)
 Test 2.CT: detects trap-dependence Previously captured animals have higher/lower capture probability than others
 - Test 3.SR: detects transience
 - Animals passing through the study area, only seen onceTest 3.Sm and 2.CL: No straightforward interpretation
- New diagnostic test for detecting heterogeneity in capture?
 Focus: 1 group of animals with high capture

 group of animals with low capture
 At each occasion,
 Less previous captures (PC)=>Less future captures(FC)

II.Why goodness-of-fit?


- Model parameters: probabilities of capture p, apparent survival Φ , transition between states Ψ
- Many possible configurations: parameters dependent on time, state, external covariate (e.g. weather), individual covariate (e.g. gender)

large number of models fitted to 1 dataset

- Best model generally chosen using information criteria (e.g. :AIC): select the least worst model among the subset of considered models.
- Important to ensure model fits data adequately!

- More PC => More FC
- Method: Goodman-Kruskal's Gamma γ

A: concordant pairs	(high PC,	high FC)
D: discordant pairs	(high PC,	low FC)

• Some example simulation results

Simulation re	Simulation results (N=2000 animals, % significant tests for 5% level, 10 occasions) Test at occasion 5				
Trap-shyness	Trap-happiness	Transience	Heterogeneity in survival	Heterogeneity in capture	
7.6	12.4	1.2	2	100	

• Further investigations: other types of heterogeneity? global test for all capture occasions? smaller sample size (hundreds)?