Markov-chain Monte Carlo: A modern primer

Lecture 3: Advanced subjects Part 3.1: Meta algorithms

Werner Krauth Département de physique, Ecole normale supérieure Paris, France

A Set of Lectures University of Kent Canterbury, Great Britain

14-17 November 2022

Werner Krauth Département de physique, Ecole normale supérie Markov-chain Monte Carlo: A modern primer

- D. A. Levin, Y. Peres, E. L. Wilmer, Markov Chains and Mixing Times, (American Mathematical Society, 2008),
- D. Frenkel, B Smit, Understanding Molecular Simulation: From Algorithms to Applications, (Elsevier, 2001)
- B. Hajek, **Cooling Schedule for optimal annealing**, Mathematics of Operations Research (1988)
- W. Krauth Statistical Mechanics: Algorithms and Computations, (Oxford University Press, 2006)

For *P* irreducible and aperiodic, with stationary distribution π :

$$max_{x\in\Omega}||P(x,\cdot)||_{\mathsf{TV}} \leq C\alpha^t$$

with C > 0 and $\alpha \in (0, 1)$.

- Exponential convergence is everywhere, but C and α are unknown.
- Can we do better?

Converging faster than exponential

Absorbing Markov chain with one absorbing state.

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

2 (Starting with
$$\pi^{\{0\}} = \pi$$
.)

3 Transition matrix $P_{ij} = \pi_j$.

$$\pi_i^{\{t+1\}} = \sum_j \pi_j^{\{t\}} P_{ji} = \underbrace{\sum_j \pi_j^{\{t\}}}_{=1} \pi_j$$

Convergence in one step, better than exponential.

Metropolis–Hastings algorithm (1/2)

$$P(a \rightarrow b) = \underbrace{\mathcal{A}(a \rightarrow b)}_{\text{consider } a \rightarrow b} \cdot \underbrace{\mathcal{P}(a \rightarrow b)}_{\text{accept } a \rightarrow b}.$$

Detailed balance:

$$\pi(a)P(a \to b) = \pi(b)P(b \to a) \tag{1}$$

$$rac{\mathcal{P}(a
ightarrow b)}{\mathcal{P}(b
ightarrow a)} = rac{\pi(b)}{\mathcal{A}(a
ightarrow b)} rac{\mathcal{A}(b
ightarrow a)}{\pi(a)}.$$

This leads to a generalized Metropolis filter

$$\mathcal{P}(a \rightarrow b) = \min\left[1, rac{\pi(b)}{\mathcal{A}(a \rightarrow b)} rac{\mathcal{A}(b \rightarrow a)}{\pi(a)}
ight]$$

Metropolis–Hastings algorithm (2/2)

Generalized Metropolis filter

$$\mathcal{P}(a
ightarrow b) = \min\left[1, rac{\pi(b)}{\mathcal{A}(a
ightarrow b)} rac{\mathcal{A}(b
ightarrow a)}{\pi(a)}
ight]$$

- $\mathcal{A}(a \rightarrow b) = \pi(b)$ unrealistic
- $\mathcal{A}(a \rightarrow b) \simeq \pi(b)$ realistic, super interesting.
- MCMC equivalent of perturbation theory in theoretical physics.
- Better \mathcal{A} 's \Leftrightarrow larger moves.
- Applications in spin models, bosonic QMC, etc..

Identify good A's through machine learning?

Characteristic times in MCMC 1/3

- Correlation time.
- Mixing time.
- Cover time.

Characteristic times in MCMC 2/3

- Correlation time: Time to move from one *i* (~ π_i) to an independent *j* (~ π_j).
- Mixing time: Time to reach a *j* ~ π_j starting from *i* ~ π^{0} with worst π^{0}.
- Cover time: Time to have seen all samples, starting from the worst initial sample *x*: t_{cov} = max_{x∈Ω} E [τ_{cov}(x)] (with τ_{cov}(x) the time to have seen all *i* ∈ Ω).

Characteristic times in MCMC 3/3

Example (SSEP of *N* hard spheres on path graph P_{2N}):

- Correlation time: $\propto N^3$.
- Mixing time: $\propto N^3 \log N$.
- Cover time: N^N.

Consequences:

• Difficult to know normalization of π :

• ... What is $Z = \sum_{x} \pi_{x}$? (Thermodynamic integration)

- **2** Difficult to know Ω :
 - ... What is $\min_x \pi_x$?
 - ... What is $\max_x \pi_x$? (Simulated annealing)
 - ... What is conductance?
- **O I Difficult to explore** Ω :
 - Is $\Omega = \emptyset$?
 - Have we seen all of Ω? (Multicanonical MC)

Missing element in P_N : Combinatorial explosion of sample space.

Thermodynamic integration, simulated annealing, etc.

- Normal MCMC (algorithm development): keep π, change P, keep Ω.
- Lifted MCMC: keep π , keep P, change Ω .
- Thermodynamic integration, sim annealing, multicanonical MC: change π, keep P, keep Ω.

Debate:

• Sampling algorithms development vs. Metaheuristics.

Thermodynamic integration

- All of MCMC: concerned with π_i/π_j , norm of π_i (usually) irrelevant.
 - Metropolis filter: $\mathcal{P}(i \rightarrow j) = \min(1, \pi_j/\pi_i)$.
 - NB: Flow: $\mathcal{F}_{ij} = \pi_i \mathcal{P}_{ij}$ (usually) unknown.
- All of physics: concerned with $Z = \sum_{i \in \Omega} \pi_i$ $(\pi_i = \exp(-E_i/kT)$
- All of physics: Partitition function known analytically in some limits:
 - High-temperature limit: $T \to \infty \Leftrightarrow \beta \to 0$
 - Ideal-gas limit: density $\rho \rightarrow 0$, interactions $\rightarrow 0$.
 - Ideal-solid limit: density $\rho \rightarrow \rho_{max}$, interactions \rightarrow harmonic.
 - Keep Ω (usually), change π .
- Creating a path from a known limit to the relevant {Ω, π} is called "Thermodynamic integration".
- Path must (normally) be smooth (avoid phase transitions).

Thermodynamic integration (example)

- V-shaped: $\pi_i = \text{const} |\frac{n+1}{2} i| \ \forall i \in \Omega.$
- const = $\frac{4}{n^2}$ is unknown.
- \tilde{V} -shaped: $\tilde{\pi}_i = |\frac{n+1}{2} i| \ \forall i \in \Omega$.
- Partition function $Z = \sum_{i \in \Omega} \tilde{\pi}_i$.
- Consider $\tilde{\pi}^{\alpha}$ ("pi to the power alpha").
- $\alpha \rightarrow 0$: high-temperature limit $\pi_i^0 = 1 \ \forall i$.
- "Riemann integration" path $\alpha(t)$ with $\alpha(0) = 0$ and $\alpha(1) = 1$.

Thermodynamic integration

- Partition function Z(α) = Σ_{i∈Ω} π̃^α_i
 (NB: π: normalized, π̃: non-normalized).
- Fundamental expression 1

$$Z(\alpha') = \sum_{i \in \Omega} \tilde{\pi}_i^{\alpha'} = \sum_{i \in \Omega} \tilde{\pi}_i^{\alpha} \frac{\tilde{\pi}_i^{\alpha'}}{\tilde{\pi}_i^{\alpha}}$$

• Fundamental expression 2:

$$\frac{Z(\alpha')}{Z(\alpha)} = \frac{1}{Z(\alpha)} \sum_{i \in \Omega} \tilde{\pi}_i^{\alpha'} = \sum_{i \in \Omega} \pi_i^{\alpha} \frac{\tilde{\pi}_i^{\alpha'}}{\tilde{\pi}_i^{\alpha}} = \mathbb{E}\left(\frac{\tilde{\pi}_i^{\alpha'}}{\tilde{\pi}_i^{\alpha}}\right)_{\alpha}$$

• Fundamental expression 3:

$$Z(1) = \left[\frac{Z(1)}{Z(0.75)}\right] \left[\frac{Z(0.75)}{Z(0.5)}\right] \left[\frac{Z(0.5)}{Z(0.25)}\right] \left[\frac{Z(0.25)}{Z(0)}\right] Z(0)$$

• Only Z(0) is known.

From thermodynamic integration to simulated annealing

Thermodynamic integration:

- MCMCs at $\alpha(t)$ with $\alpha(0) = 0$ and $\alpha(1) = 1$
- Samplings at different α independent.

Simulated annealing:

- The sampling at $\alpha = 1$ may be difficult in MCMC.
- Use the same sequence of α, but starting sample at α' equals final sample at α. Simulated annealing:
- Samplings at different α dependent.
- Most studied (basic convergence theorem: Hajek (1988))
- Meta-MCMC algorithm: Work on "cooling schedule" α_t rather than on $P^{\{\alpha=1\}}$.

Simulated annealing can be tested in:

- V-shaped stationary distribution
- Simulated annealing: Sequence of samplings that feed on each other (feed-forward), single sampling "active" at any time.
- Simulated tempering (feed-back, many samplings simultaneously active).