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Quantum thermalization 

Investigate whether/how closed quantum  
many-body systems thermalize:

⇢Block = ⇢Thermal

t | i

Ut = exp(�itH)

[non-integrable]

Closed quantum system

| i

[Srednicki, Deutsch, Rigol]

Entanglement accumulated during time evolution



Characterizing thermalization dynamics 

Weakly coupled systems: 
Quasi-particles → Boltzmann equation 

Strongly coupled systems: 
Dynamics of complex  
quantum-many body problem!

Long times: emergent hydrodynamic 
relaxation @te�Dr2e = rf



Overview

(1) Entanglement growth following  
a quantum quench 

(2) Dissipation-assisted operator  
evolution method for capturing  
hydrodynamic transport

Sα>1 ∝ t

‣ Efficient calculation of spin and  
energy diffusion constants
[Rakovszky,  von Keyserlingk, FP, arxiv:2004.05177]

‣ Diffusive growth of Renyi entropies 
       in systems with diffusive transport 
[Rakovszky, FP,  von Keyserlingk,  PRL 122, 250602 (2019)]
Sα>1 S1 ∝ t



Measuring the amount of entanglement 

Von Neumann entropy (entanglement entropy) 

SvN = − TrρBlock log ρBlock

‣ Convenient for theoretical considerations 
but not experimentally accessible 

Renyi entropies 

Sα =
1

1 − α
log Trρα

Block

‣ Experimentally accessible  
for

‣  
α = 2

[Brydges et al. arxiv 1806.05747] 
[Kaufman et al. Science '16] 
[Islam et al. Nature ’15]

SvN = S1



Entanglement growth after a quantum quench

How does the entanglement entropy      grow?

‣ Integrable systems  → Quasiparticle picture: linear growth

[P. Calabrese and J. Cardy ’06]

tJ?

tJ?

S

SvN

‣ Linear growth of        also holds for systems  
without quasiparticles [Kim and Huse ’13]

SvN



Linear entanglement growth in random circuit models

Each gate is a            Haar random unitaryq2 × q2

‣          both grow linearly (+ random fluctuations)S1, S2

Nahum Ruhman, Vijay, Haah: PRX (2017)  
Nahum, Vijay, Haah: PRX (2018) 
von Keyserlingk, Rakovszky, FP, Sondhi: PRX (2018)  
Zhou, Nahum (arXiv 1804.09737) 
Chan, De Luca, Chalker : PRX (2018)



Growth of Renyi entropies

Conservation laws generically lead to diffusive growth of         !

‣ U(1)-symmetric random circuit 

‣ Maps to “classical” partition function: efficient calculation of the 
annealed average of 2nd Rényi entropy

Sα>1

[Rakovszky, FP,  von Keyserlingk,  PRL 122, 250602 (2019)]



Entanglement growth after a quantum quench

Same behavior in a Hamiltonian with only  
energy conservation H = J∑

r

ZrZr+1 + hzZr + hxXr

[Rakovszky, FP,  von Keyserlingk,  PRL 122, 250602 (2019)]



Entanglement growth after a quantum quench

Same behavior in a Hamiltonian with only  
energy conservation H = J∑

r

ZrZr+1 + hzZr + hxXr

 rare states 

[Rakovszky, FP,  von Keyserlingk,  PRL 122, 250602 (2019)]



Intuitive picture

Spin 1/2 chain with      conservation Sz

(1) Write state as sum over histories  
in     basis:  

(2) Split sum into two parts                               with 
                                                 . Diffusion: only down spins       
 within distance         can spoil the rare region

(3) Eckart-Young theorem: if       has Schmidt rank   

Sz

𝒪( t)

|ϕ0⟩ χ
2

Related work:  
Huang, arXiv:1902.00977

: Rare events yield diffusive growth  Sα>1
Sα≤1: Dominated by the mean, yielding ballistic growth 

[Rakovszky, FP,  von Keyserlingk,  PRL 122, 250602 (2019)]



Overview

(1) Entanglement growth following  
a quantum quench 

(2) Dissipation-assisted operator  
evolution method for capturing  
hydrodynamic transport

Sα>1 ∝ t

‣ Efficient calculation of spin and  
energy diffusion constants
[Rakovszky,  von Keyserlingk, FP, arxiv:2004.05177]

‣ Diffusive growth of Renyi entropies 
       in systems with diffusive transport 
[Rakovszky, FP,  von Keyserlingk,  PRL 122, 250602 (2019)]
Sα>1 S1 ∝ t



Numerical complexity of many-body dynamics 

Directly simulate the time evolution within the  
full many-body Hilbert space | (t)i = e�itH | (0)i

‣ Complexity 
‣ Sparse methods  

(dynamical typicality) 
up to ~30 spins  

∝ exp(L) 10 spins dim=1‘024 
20 spins dim=1‘048‘576  
30 spins dim=1’073‘741‘824 
40 spins dim=1‘099‘511‘627‘776 

Matrix-Product State based numerics 
‣ Complexity ∝ exp(t)



“Information paradox"

Quantum quench from product state

Thermal state 
(locally)

⌧th t

#B
its

How to truncate entanglement without sacrificing crucial 
information on physical (local) observables?

Approaches that still need to demonstrate ability to  
capture the correct hydro transport: 
[White et al.: PRB 2018] [Krumnow et al.: arXiv:1904.11999]
[Wurtz et al.: Ann. Phys. 2018]

[Schmitt, Heyl: SciPost 2018]
[Parker et al., PRX 2019] [Leviatan et al., arXiv:1702.08894]
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Time-dependent variational principle (TDVP) 

Variational manifold: MPS states with fixed bond dimension 

 j1,j2,j3,j4,j5 = A[1]j1
↵ A[2]j2

↵� A[3]j3
�� A[4]j4

�� A[5]j5
�

[Haegeman et al. ’11, Dorando et al. ’09 ]

‣ Global conservation laws (energy, particles,…)

Classical Lagrangian

2

to a direct product of unit matrices representing the lo-
cal mixed states. When perturbed by a local operator at
the origin (e.g. imposing a spin up there), such a system
is expected to relax back to e↵ective local equilibrium
over a short timescale set by the local interactions. One
might hope that the local equilibrium state attained in
the process can again be described in terms of an MPO
(or purified state) with short range quantum correlations,
similar to the initial state. Unfortunately the exact time
evolution, leads to linear growth of the entanglement en-
tropy of the density matrix in time. Attempts to curb
the entanglement growth, while still capturing the exact
density matrix, have met with only partial success, al-
lowing to reduce the growth rate somewhat [23]. But the
fundamental problem of an exponentially growing bond
dimension remains.

Here we take a di↵erent approach, which aims to trun-
cate the entanglement growth within a systematic ap-
proximation, rather than attempting to capture the ex-
act dynamics. To this end we employ the time dependent
variational principle (TDVP) [24, 25] to time-evolve ma-
trix product states within a space of fixed bond dimen-
sion �, using an e�cient algorithm proposed by Haege-
mann et. al. [26]. The entanglement entropy in this ap-
proach is capped by log�. Hence, the MPS is not even a
nearly approximate description of the micro-state, which
would naturally evolve to volume law entanglement en-
tropy. In the language of time dependent matrix product
state calculations, the truncation error is bound to be-
come large after a short time.

Why then should the TDVP scheme nonetheless cap-
ture the long time dynamics of thermalizing systems? A
crucial feature for our purpose is that the TDVP respects
conservation laws regardless of the truncation. This is in
contrast to the common time evolving block decimation
(TEBD) scheme which violates them when the trunca-
tion error becomes large. Indeed the TDVP generates,
classical chaotic dynamics in the variational manifold,
driven by a classical Hamiltonian having the same sym-
metries as the original quantum Hamiltonian. Hence the
hydrodynamic behavior of local observables is guaran-
teed to emerge at long times even if we only keep a small
bond dimension. Of course, we are not guaranteed apri-
ori that the hydrodynamics in this scheme is governed by
the correct transport coe�cients. On physical grounds,
however, we expect that these are determined by quan-
tum processes that occur on rather short scales related to
the short thermalization time and possibly the thermal
coherence length. Such processes can in principle be cap-
tured by MPS with finite bond dimension. Increasing the
bond dimension of the variational family of states allows
to systematically improve the calculation and to assess
the accuracy of the result by checking for convergence
with �.

To test the new approach we consider the dynamics
of the Ising chain with both longitudinal and transverse

fields

H = J

N�1X

i=1

S
x
i S

x
i+1 + hx

NX

i=1

S
x
i + hz

NX

i=1

S
z
i . (1)

Here S
↵
i are spin-1/2 operators defined on site i. In our

calculations the chain length is N = 101. This model, in
a regime of parameters far from any integrable point is
commonly used as a testbed for thermalization dynamics.
A simplifying feature is the lack of any symmetries, which
leaves energy alone a conserved quantity.
We use the TDVP to compute the dynamics after a lo-

cal quench generated by local perturbation of an ensem-
ble of initial MPS that represents an infinite temperature
state. We compute two types of quantities. First we look
at relaxation of local observables following the quench to
find the expected long time tails associated with energy
di↵usion. From this we extract the energy di↵usion co-
e�cient. Second, we compute diagnostics of chaos from
which we extract a Lyapunov exponent and a ”butterfly
velocity” associated with the ballistic propagation of the
chaos front. Both types of quantities appear to converge
well with bond dimension �.
Method – We now describe the application of the TDVP
approach to the problem in some more detail. As men-
tioned, the TDVP imposes classical dynamics in a phase
space defined by the parameters of the variational state
| [↵] i through the e↵ective Lagrangian

L[↵, ↵̇] = h [↵] | i@t | [↵] i � h [↵] |H | [↵] i (2)

In our context the variational manifold is the space of
MPS with fixed bond dimension �:

| i =
X

�1···�N

A
1
�1

· · ·AN
�N

|�1 · · ·�N i (3)

The variational time evolution is implemented in each
step �t through application of e↵ective single site evolu-
tion operators on all the matrices A1 to AN in succession,
as prescribed in Ref. [? ]. To generate the e↵ective single
site evolution, the MPO representing the full evolution
operator of a time step is contracted from both sides with
the truncated MPS having the matrix corresponding to
that site removed.
Our goal is to compute the evolution of a perturba-

tion applied to a thermal ensemble. Thus we compute
the time dependent quantities following the quench as
averages over an ensemble of initial states chosen to rep-
resent the suitable canonical ensemble, perturbed by ap-
plication of a S

+ operator on one site in the middle of the
chain. Thus, for example, in the calculation shown in Fig.
we start from a random sample of product states, with
the direction of each spin on each site chosen indepen-
dently from a uniform distribution on the Bloch sphere.
This ensemble represents and infinite temperature state.
The quench consists of application of the single site S

+
i

Efficient evolution using a projected Hamiltonian 

[Leviatan, FP,  Bardarson, Huse, Altman, arXiv:1702.08894]

ℋ

χ

[see also: Thermofield purification of the density matrix,  
Hallam, Morley, and A. G. Green ’19]



Time-dependent variational principle (TDVP) 

Ising model H =
X

i

JS
z
i S

z
i+1 � h?S

x
i � h||S

z
i

ED TDVP

Ensemble of initial states: S+
L/2| (0)i Energy relaxation 

[Leviatan, FP,  Bardarson, Huse, Altman, arXiv:1702.08894]



Time-dependent variational principle (TDVP) 

XXZ Model

Ensemble of initial states: S+
L/2| (0)i

H =
X

i>j

a
i�j(Sx

i S
x
j + S

y
i S

y
j +�S

z
i S

z
j )

Sz relaxation 

ED TDVP

???

[Leviatan, FP,  Bardarson, Huse, Altman, arXiv:1702.08894]



Dissipation-assisted operator evolution method

”Artificial dissipation leads to a decay of 
operator entanglement, allowing us to 
capture the dynamics to long times”
[Rakovszky,  von Keyserlingk, FP, arxiv:2004.05177]



Obtain dynamical correlations of conserved densities

Map operators to states: 

Problem: Complexity ∝ exp(t)
[Jonay, Huse, Nahum: arXiv:1803.00089]

11

FIG. 12: Time dependence of the operator entanglement,
across a cut at bond x, for the time-evolved Pauli matrix
Z1(t) in a chain of length L = 14. The times shown are
t = 1, 2, . . . , 10 and t = 100. The right-hand section of the
t = 7 data (red line) has a slope close to our estimate of
sspread. The slope at asymptotically late times is close to 2
bits per site, as expected for a thermalized operator.

to an initially local operator.) Below we will discuss the
spacetime interpretation of Eq. 25.

The maximal entanglement slope for the operator, for
which the right hand side of (25) vanishes, is twice that
for the state, 2⇥ seq. For the infinite temperature spin-
1/2 chain studied numerically below, this is two bits per
site.

In the scaling limit, the entanglement profile of an ini-
tially local operator (initially located at the origin) will
then be the pyramid

Ŝ(x, t) = sspread(vBt� |x|), (26)

for |x|  vBt, where where sspread < 2 is the solution to
the equation10

vB sspread = 2�
⇣sspread

2

⌘
. (27)

This is illustrated in Fig. 11. The entanglement pro-
file Ŝ(x, t) of the spreading operator consists of four lin-
ear sections: the two regions outside of the operator’s
edges to the left and right where Ŝ = 0, and the two
linear sections on either side within the spreading opera-
tor, as illustrated in Fig. 10 (Left). At the points where
these linear sections meet, the exact entanglement pro-
file is smoothly rounded out due to higher order terms in

10 Since �00  0 there is only one such solution, and this entangle-
ment profile is dynamically stable.

FIG. 13: Operator entanglement of the operator ZL/2(t)
which starts near the centre of the chain, for times
t = 1, 2, . . . , 10 and t = 100.

the gradient [12] that are ignored in this leading coarse-
grained entanglement dynamics (3), as we will see in the
numerics below.
In this scenario the entanglement gradient sspread of

the spreading operator is necessarily less than that of a
maximally entangled operator whenever vB > 0. When
an edge of the operator reaches the end of a finite spin
chain, then the operator stops spreading, allowing the
region of the operator adjacent to this end to become
maximally entangled, as illustrated in Fig. 10 (Right).
We have explored the entanglement of spreading oper-

ators numerically in the quantum chaotic Ising spin chain
with longitudinal and transverse fields, Eq. (1), with L
sites for L up to 14. We diagonalize this Hamiltonian ex-
actly to obtain the operator dynamics. We will present
results for the spreading of the initially local operators
Z1 and ZL/2, one of which starts near the end of the
chain and the other near the center. Other initially lo-
cal operators behave essentially the same as these two
examples.
The behavior of Ŝ(x, t) for the operator Z1(t) in a chain

of length L = 14 is shown in Fig. 12. (The figure shows
t = 1, 2, . . . , 10 and t = 100.) By starting the operator at
the end of the chain, we are able to watch it spread in one
direction over a distance of (L � 1) sites. The operator
spreads across the chain, while promptly getting locally
maximally entangled near the end of the chain where it
started. This sets up the spreading profile with a roughly
linear Ŝ vs. x over the central region of the chain, and a
steady production of entanglement.
We obtain the steady-state slope sspread = |@Ŝ/@x| by

measuring the slope of the right-hand linear section of the
entanglement profile. The L = 14 data at t = L/2 shows
a slope sspread ⇠ 0.87. Appendix B compares results for
L = 8, 10, 12, 14 to give an idea of the finite-size e↵ects.

C(x, t) ≡ ⟨qx(t)q0(0)⟩β=0 = ⟨qx |eiℒt |q0⟩, ℒ |qx⟩ ≡ [H, qx] = − i∂t |qx⟩



Artificial dissipation that not affects hydrodynamics 

Basis of operators: Pauli strings

𝒮 = …ZX11YX1111Y… |q0(t)⟩ = ∑
𝒮

a𝒮 |𝒮⟩

Dissipator:

𝒟ℓ*,γ |𝒮⟩ = {
|𝒮⟩ if ℓ𝒮 ≤ ℓ*

e−γ(ℓ𝒮−ℓ*) |𝒮⟩ otherwise

Cutoff length #non-trivial Paulis ℓ* =

Dissipation strength: γ
(should be larger than support of conserved densities)

[Rakovszky,  von Keyserlingk, FP, arxiv:2004.05177]



Artificial dissipation that not affects hydrodynamics Artificial dissipation that not affects hydrodynamics 

Modified evolution: dissipate after every Δt

| q̃x(NΔt)⟩ ≡ (𝒟ℓ*,γe
iℒΔt)

N
|qx⟩ 𝒟ℓ*,γ |𝒮⟩ = {

|𝒮⟩ if ℓ𝒮 ≤ ℓ*

e−γ(ℓ𝒮−ℓ*) |𝒮⟩ otherwise

‣Key assumption: backflow from long to short operators is weak
‣Compare: Short memory time in Zwanzig-Mori memory matrix

[Rakovszky,  von Keyserlingk, FP, arxiv:2004.05177]



Dissipation stops growth of operator entanglement

Represent dissipative evolution as tensor network

Time Evolving Block  
Decimation (TEBD)

Low-dimensional  
Matrix-Product Operator

0 5 10 15 20
Time t
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S
vN
[h̃

j(
t)
]
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Time t

10°6

10°5
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10°3

10°2

10°1

|1
°

P
j
C

j(
t)
|

¬ = 32

¬ = 64

¬ = 128

¬ = 256

¬ = 512

Test on Ising chain: H = ∑
j

hj ≡ ∑
j

gxXj + gzZj + (Zj−1Zj + ZjZj+1)/2

gx = 1.4; gz = 0.9045

[Vidal ‘03]

[Rakovszky,  von Keyserlingk, FP, arxiv:2004.05177]



Diffusion constant from mean-square displacement

0 5 10 15 20
Time t

0

10

20

30

40

50

M
SD

d2
(t
)

L = 9

L = 13

L = 17

L = 21

DAOE

°20 °10 0 10 20
Position x

0.0

0.1

0.2

hh
x
h
0(
t)
i

`§ = 2, ¢t = 0.25, ∞ = 0.03

t = 3

t = 7

t = 11

t = 15

t = 19

t = 23

Time-dependent diffusion constant: 2D(t) ≡
∂d2(t)

∂t
Diffusive transport: D ≡ lim

t→∞
D(t)

[Rakovszky,  von Keyserlingk, FP, arxiv:2004.05177]

C(x, t) ≡ ⟨qx | q̃0(t)⟩ d2(t) ≡ ∑
x

C(x, t)x2 (MSD)



High precision in various models

Ising: H = ∑
j

hj ≡ ∑
j

gxXj + gzZj +
1
2

(Zj−1Zj + ZjZj+1)

[Rakovszky,  von Keyserlingk, FP, arxiv:2004.05177]

qx ≡ hj
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High precision in various models

XX ladder: H =
L

∑
j=1

∑
a=1,2

(Xj,aXj+1,a + Yj,aYj+1,a) +
L

∑
j=1

(Xj,1Xj,2 + Yj,1Yj,2)

[Rakovszky,  von Keyserlingk, FP, arxiv:2004.05177]

D ≈ 0.95 [Steinigeweg et al., ’14]
qx ≡ (Zj,1 + Zj,2)/2
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Summary
(1) Entanglement growth following  

a quantum quench 

(2) Dissipation-assisted operator  
evolution method

Sα>1 ∝ t

‣ Efficient calculation of spin and  
energy diffusion constants
[Rakovszky,  von Keyserlingk, FP, arxiv:2004.05177]

‣ Diffusive growth of Renyi entropies 
       in systems with diffusive transport 
[Rakovszky, FP,  von Keyserlingk,  PRL 122, 250602 (2019)]
Sα>1

S1 ∝ t

T. Rakovszky, TUM C.v Keyserlingk, Birmingham
Thank You!


