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This presentation file is based on what was used in the actual talk at
#CMPCity2020, but slightly revised and modified

Talk | (Last week, Thursday 18 June)
Applications of Adiabatic Flux Insertion to
Quantum Many-Body Systems:
A Pedagogical Introduction

M. O.and T. Senthil, PRL 96, 060601 (2006)

Talk 2 (Today, Friday 26 June)
Adiabatic vs Sudden Flux Insertion and
Nonlinear Electric Conduction

M. O.PRL 84, 1535 (2000) / PRL 90,236401;90 109901 (E) (2003)
Haruki Watanabe and M.O., arXiv:2003.10390
Haruki Watanabe, Yankang Liu, and M. O., arXiv:2004.0456 |
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Adiabatic Flux Insertion
(i) Increase Aharonov-Bohm flux ® adiabatically from
0 to Oo(=21T) Vo) — W)

Hamiltonian for the final state is
different from the original one, but
we can

(ii) eliminate the unit flux quantum by
the large gauge transformation

Uy H(® = 2m)U, " = H(P = 0)
U, =exp (ZLan;>
Wo) — [Wg) — Uz |¥p)
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Many Particles on Periodic Lattice

For example, consider a many-particle system on the
square lattice of Ly X L, with periodic boundary conditions
assume particle number conservation (U(l) symmetry)

2 * L 2 L 4 * L ]

assume that the system is gapped, and consider the
adiabatic insertion of unit flux quantum through the “hole

4 M. O. 2000
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Translation Invariance

Translation invariance = Momentum Conservation
P = iV
Lattice model / periodic potential

discrete (lattice) translation: T, = e''™

Let us now consider the adiabatic flux insertion
Dot
Ap = —
TL,
Hamiltonian is always translation invariant
= momentum is exactly conserved!

initial state:  P” — final state: P%
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Which Momentum!?

What is conserved exactly is the
“canonical momentum” which is NOT gauge-invariant!

Pcanonical — _Zv Pkinetic — —zV — A
kinetic momentum = covariant derivative
(gauge invariant)

After the insertion of the unit flux quantum,
the system is equivalent to zero flux but in the different
gauge!
We must eliminate the vector potential
by the large gauge transformation
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Large Gauge Transformation

Initial Groundstate |Yo) Final State  |¥g) = F2| Vo)
T, o) = =" [Wo) T, W) = P |wp)
groundstate of (0) groundstate of H(2m)

Large gauge transformation

7)) = U, | W) must be a groundstate of H(0)

Uy = exp (Lx;xw> U, "T,U, =T,exp (L—xZn;>

~

T, Bp) = (P 425 T 1)
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Mentum Shift

pO _ pO) 4 | total number of particles
| (conserved)

We are usually interested in the thermodynamic limit
for a fixed particle density (particle # / unit cell) v
p

Suppose v = p and choose L, to be a coprime with g
27 D
L, " " q

Lattice momentum is defined modulo 2711
momentum shifted if ¢ # | (fractional filling)

The final state is different from the initial ground state
= ground-state degeneracy!
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“Lieb-Schultz-Mattis Theorem”

General constraint on the spectrum of
quantum many-body Hamiltonian on a periodic lattice

Periodic (translation invariant) lattice = unit cell
U(l) symmetry = conserved particle number

V :number of particle per unit cell (filling fraction)

V=plqg = . .
. “ingappability”
- system is gapless
OR

- gapped with g-fold degenerate ground states

capped-Aith-HRlgue oroura-state
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History of the LSM Theorem

1961 LSM $=1/2 chain

1981 [Haldane “conjecture”, dependence on 25 mod 2]
1986 Affleck-Lieb LSM theorem for general $ chain
1997 M.O.-Yamanaka-Affleck general magnetization
1997 Yamanaka-M.O.-Affleck electrons/particles
2000 M. O. “flux insertion” argument for dz2

2004 Hastings rigorous proof
2006 Nachtergale=-Sims really rigorous proof

many recent extensions!
(non-symmorphic crystal symmetry
Parameswaran et al. 2013 etc.)
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Gap Closing by AB Flux?

the spectrum is identical!

E 4
adiabatic evolution!?
| gap /\f | gap
=0 ® = 27(= Py)

In principle, the ground state could evolve into an
excited state, if there is a gap closing (level crossing
with the “excited state”) at some value of @



Insulator vs Conductor

Linear response theory: current induced by electric field
J(w, @) = o(w, DE(w, q)
Drude weight o(w) =0(w,§=0)

N

D)1 |
o(w) = T regular part
S— +0 D=0 : insulator (Kohn, 1963)

D>0 : conductor

In a realistic system, the Drude peak is broadened
(0>0), but in an ideal model we can identify delta-function
Drude peak as a signature of “perfect conductor”



Real-Time Formulation of D

Ja(t) ~ / o(t —t"E,(t") dt’

— OO

lim o(t) = p current |ndL.|ced by the e.Iectl'*lc field at F=O,
t— o0 that survives after an infinitely long time

Initial condition at t=0: ground state |¥o)

switch on an (infinitesimal) constant electric field for t>0
Ay = Age
¢ = Ao Be= o adiabatic limit T — o0

Jo(t) ~ DAz M. O. 2003
I Watanabe-M.O. 2020



Current vs Energy

On the other hand, the current operator is

. 1 OH 1 7dAN "t oy V:volume
hzvan(Ax):v(dt) ot ( y
ju(t) ~ D=2t

T

\, v,

v

1 1 T on A, [t A\ 2 T2
vV €o v_/o<at>dt T/O]x(t)dt D(T) 9

""\

For an adiabatic flux insertion

For the adiabatic insertion of unit flux quantum 4, = %
V &2
G.S. energy increase in A&o(Po) = 212 ®o" D

the adiabatic flux insertion
4 M. O.2003



Gap Protection in Insulators (d=2)

. E
the spectrum is identical! %

adiabatic evoW
I gap/

p—g S50

If this happens in d=2, energy gain = gap = D>0 !

i.e. in an insulator, the groundstate must remain in the
groundstate in the adiabatic flux insertion = LSM
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Kohn Formula
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0 (Ay)
4 0A, Az=0

Kohn’s formula for the Drude weight

PHYSICAL REVIEW VOLUME 133, NUMBER 1A 6 JANUARY 1964

Theory of the Insulating State*

WALTER KOHN
University of California, San Diego, La Jolla, California
(Received 30 August 1963)

In this paper a new and more comprehensive char. glterlzatlon of the insulating state of matter is developed.
This charactenzatmn includes the conventlonal insulators with energy gap as well as systems discussed by



Non-Linear Conductivities

Non-linear electric conduction:

AC E-field . .
topic of current interest
- N Ly i e.g. ‘shift current”
%t e e o e s application to photovoltaics
DC current n-th order conductivity

Z '/ / / oM (t =ty t—to, ... t—1tp)
n

E.(t1)Ey(ts) ... Ex(t,) dtidty ... dt,
Nonlinear Drude weights
lim o™ (Aty, Aty, ..., At,) = D™

Aty ,Atg ,...,Atn—>OO
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Non-Linear “Kohn Formula”

Consider the same adiabatic flux insertion
and include the non-linear Drude weights

n+1 Tn—l—l 1

D(n) $TL—|—1
n+1 (n+1)! A

Watanabe-M.O. 2020
~J Watanabe-Liu-M.O. 2020




Sudden Flux Insertion
t
T — 0:sudden insertion
delta-function electric field pulse

In this limit, quantum state (wavefunction) does not change

but again we are in a different gauge, so need to apply
the large gauge transformation to go back to the original

gauge
Wo) — |Wo) — Uz|¥o)



Energy Gain in Sudden Flux Insertion

1 ((\I’olUwTH(O)le‘I’()) - (‘I’o|7{(0)|‘1’0>) cf.) LSM
| o, variational
. Zv<‘1’0| [H(Aw = L_:c) - H(O)] [Wo) | energy
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Non-linear f-Sum Rules

Comparing both sides, we obtain the identity

instantaneous response in real-time

c™(0,0,...,0)

TL

O 1H(AL)
ann—l—l

= (Yo

Up)
A, =0

/ dwl/ dwg /OO dw,, (n)
= .. —O0 (wl,wg,...,wn)
_ oo 2T

[frequency space representation]

Watanabe-M.O. /Watanabe-Liu-M.O. 2020
cf.) Shimizu 2010, Shimizu-Yuge 201 |
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Example: Tight-Binding Model

(a) (¢) oz(wi)

—itoe~ e 4itye e 0.6
s N
-O f O O O 0.4

: 0.2
J\ .
=B =2 =

(d) oz(wi)

-0.2 -0.1 0.0 0.1 0.2

FIG. 1. The linear and the second-order optical conductivities in the tight-binding model in Eq. (74). (a) The real-space
illustration of the model. (b) The band structure £,;, as a function of k,. The orange part is occupied in the ground state.
(¢) 0% (w1) as a function of wy € (—3,3). The gray curve is the fit by Eq. (75). (d) The zoom up of (c¢) for w; € (—0.2,0.2). (e)
0" (w1,w2) as a function of wy,ws € (—3,3). (f) The zoom up of (e).
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TABLE I. Numerical results for the tight-binding model in Eq. (74

in the actual calculation.

Numerical Check

). See the main text for the definitions of these quantities

Linear response oy (w1)

Second-order response 05" (w1, w2)

Drude weight

f-sum

Drude weight

f-sum

5 92&0(AL dw 92 H(A, s 93E0 (AL w1 dw m O3 H(A,
Dy % 0(14(3, : [1 Loz (w1) 211 < (')fgi )>0 Dy 1L 8?4(-3 : jfd(Qll)zzo (w1, w2) 111,< afg?f. )>
0.0788238  0.0788231 0.0487034 0.0487345 0.0122513 0.0122554 0.00594065 0.00596566
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Summary

Two general formulas for non-linear conductivity

f-sum rules (instantaneous response = W-integral)

c(™(0,0,...,0)

O" T H(A,

+1

energy gain by sudden flux insertion

= (Yo

“Kohn formulas” for non-linear Drude weights
(long-time response = |/w pole)

1 ontig
D) — 0 (A,)

energy gain by adiabatic flux insertion
more general results are given in arXiv:2003.10390 & arXiv:2004.0456 |
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