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Adiabatic Flux Insertion
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Φ

 (i) Increase Aharonov-Bohm flux Φ adiabatically from
         0 to Φ0(=2̟)

Hamiltonian for the final state is
  different from the original one, but
  we can 

(ii) eliminate the unit flux quantum by 
the large gauge transformation

UxH(Φ = 2π)Ux

−1 = H(Φ = 0)

Ux = exp

(

2πi

Lx

∑

!r

xn!r

)

|Ψ0〉 → |Ψ′

0
〉

|Ψ0〉 → |Ψ′

0
〉 → Ux|Ψ

′

0
〉



Many Particles on Periodic Lattice
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For example, consider a many-particle system on the
square lattice of Lx × Ly with periodic boundary conditions
     assume particle number conservation (U(1) symmetry)

Φ

assume that the system is gapped, and consider the 
adiabatic insertion of unit flux quantum through the “hole”

M. O. 2000



Translation Invariance
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Translation invariance ⇒ Momentum Conservation

Lattice model / periodic potential

Tx = e
iPxdiscrete (lattice) translation:

Hamiltonian is always translation invariant
     ⇒ momentum is exactly conserved!

    initial state:                   ⇒  final state:      

!P = −i!∇

Let us now consider the adiabatic flux insertion

Ax =

Φ0t

TLx

P
(0)
x

P
(0)
x



Which Momentum?
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What is conserved exactly is the
   “canonical momentum” which is NOT gauge-invariant!

!Pcanonical = −i!∇ !Pkinetic = −i!∇− !A

kinetic momentum = covariant derivative
                                          (gauge invariant)

After the insertion of the unit flux quantum,
  the system is equivalent to zero flux but in the different
  gauge! 
We must eliminate the vector potential
                            by the large gauge transformation



Large Gauge Transformation
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|Ψ0〉Initial Groundstate

Tx|Ψ0〉 = e
iP

(0)
x |Ψ0〉

Final State |Ψ′

0
〉 = Fx|Ψ0〉

Tx|Ψ
′

0
〉 = e

iP
(0)
x |Ψ′

0
〉

Large gauge transformation

must be a groundstate of H(0)|Ψ̃′

0
〉 ≡ Ux|Ψ

′

0
〉

Ux = exp

(

2πi

Lx

∑

!r

xn!r

)

Ux

−1
TxUx = Tx exp

(

2πi

Lx

∑

!r

n!r

)

groundstate of groundstate ofH(0) H(2π)

Tx|Ψ̃
′

0〉 = e
i(P (0)

x
+ 2π

Lx

∑
"r
n"r)|Ψ̃′

0〉



Momentum Shift
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P
(0)
x

→ P
(0)
x

+
2π

Lx

∑

!r

n!r
total number of particles
(conserved)

We are usually interested in the thermodynamic limit
    for a fixed particle density (particle # / unit cell) ν

 Suppose                and choose Ly to be a coprime with qν =

p

q

∆Px =
2π

Lx

LxLyν = 2πLy

p

q

Lattice momentum is defined modulo 2̟
   momentum shifted if q ≠ 1 (fractional filling)
The final state is different from the initial ground state
   ⇒ ground-state degeneracy!



“Lieb-Schultz-Mattis Theorem”
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General constraint on the spectrum of
   quantum many-body Hamiltonian on a periodic lattice

Periodic (translation invariant) lattice ⇒ unit cell

U(1) symmetry ⇒ conserved particle number

ν : number of particle per unit cell (filling fraction)

ν = p/q    ⇒  

   - system is gapless
OR
   - gapped with q-fold degenerate ground states
     gapped with unique ground state

“ingappability”



History of the LSM Theorem
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1961 LSM S=1/2 chain
1981 [Haldane “conjecture”, dependence on 2S mod 2]
1986 Affleck-Lieb LSM theorem for general S chain
1997 M.O.-Yamanaka-Affleck general magnetization
1997 Yamanaka-M.O.-Affleck electrons/particles
2000 M. O. “flux insertion” argument for d≧2

2004 Hastings rigorous proof
2006 Nachtergale-Sims really rigorous proof
…
many recent extensions!
   (non-symmorphic crystal symmetry 
       Parameswaran et al. 2013 etc.)



Gap Closing by AB Flux?
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Φ = 0 Φ = 2π(= Φ0)

the spectrum is identical!

E

gap

E

gap

adiabatic evolution? 

In principle, the ground state could evolve into an
  excited state, if there is a gap closing (level crossing
   with the “excited state”) at some value of Φ



Insulator vs Conductor
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Linear response theory: current induced by electric field

Drude weight

D=0 :  insulator
D>0 :  conductor

(Kohn, 1963)

In a realistic system, the Drude peak is broadened
 (δ>0), but in an ideal model we can identify delta-function
 Drude peak as a signature of “perfect conductor”

δ→ +0



Real-Time Formulation of D
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Initial condition at t=0: ground state

switch on an (infinitesimal) constant electric field for t>0

M. O. 2003
Watanabe-M.O. 2020

Ax = Ax

t

T
Ex =

Ax

T

jx(t) ∼

∫
t

−∞

σ(t− t′)Ex(t
′) dt′

lim
t→∞

σ(t) = D
current induced by the electric field at t=0,
    that survives after an infinitely long time

|Ψ0〉

adiabatic limit  T →∞

jx(t) ∼ D
Ax

T
t



Current vs Energy
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On the other hand, the current operator is

ĵx =
1

V

∂H

∂Ax

(Ax)

For an adiabatic flux insertion

=
1

V

(

dAx

dt

)

−1
∂H

∂t

1

V
∆E0 =

1

V

∫ T

0

〈
∂H

∂t
〉 dt =

Ax

T

∫

T

0

jx(t) dt ∼ D

(

Ax

T

)2
T 2

2

For the adiabatic insertion of unit flux quantum 

jx(t) ∼ D
Ax

T
t

Ax =

Φ0

Lx

∆E0(Φ0) =
V

2Lx

2
Φ0

2
DG. S. energy increase in

the adiabatic flux insertion
M. O. 2003

V: volume



Gap Protection in Insulators (d=2)
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Φ = 0 Φ = 2π(= Φ0)

the spectrum is identical!

If this happens in d=2, energy gain ≧ gap ⇒ D>0 !!

i.e. in an insulator, the groundstate must remain in the
       groundstate in the adiabatic flux insertion ⇒ LSM

E

gap

E

gap

adiabatic evolution? 

∆E0(Φ0) =
V

2Lx

2
Φ0

2
D

O(Ld−2)



Kohn Formula
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∆E0(Φ0) =
V

2Lx

2
Φ0

2
D

D =
1

V

∂2E0

∂Ax

2
(Ax)

∣

∣

∣

∣

Ax=0

Kohn’s formula for the Drude weight

Ax =
Φ0

Lx

→ 0



Non-Linear Conductivities
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e.g. “shift current”

application to photovoltaics

AC E-field

DC current

lim
∆t1,∆t2,...,∆tn→∞

σ
(n)(∆t1,∆t2, . . . ,∆tn) = D(n)

n-th order conductivity

Nonlinear Drude weights

jx(t) ∼

∞∑
n=1

1

n!

∫
t

−∞

. . .

∫
t

−∞

∫
t

−∞

σ
(n)(t− t1, t− t2, . . . , t− tn)

Ex(t1)Ex(t2) . . . Ex(tn) dt1dt2 . . . dtn

Non-linear electric conduction:
topic of current interest



Non-Linear “Kohn Formula”

18

Ax = Ax

t

T
j(n)
x

(t) ∼
1

n!
D(n)

(

Ax

T

)

n

tn

1

V
∆E

(n+1)
0 =

1

V

∫

T

0

∂H

∂t
dt =

Ax

T

∫

T

0

j(n)
x

(t) dt

∼

1

n!
D(n)

(

Ax

T

)n+1
Tn+1

n+ 1
=

1

(n+ 1)!
D(n)

Ax
n+1

D
(n) =

1

V

∂n+1E0

∂Ax

n+1 (Ax)

∣

∣

∣

∣

Ax=0

Consider the same adiabatic flux insertion
   and include the non-linear Drude weights

Watanabe-M.O.       2020
Watanabe-Liu-M.O. 2020



Sudden Flux Insertion
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Ax = Ax

t

T
Ex =

Ax

T

T → 0: sudden insertion
        delta-function electric field pulse

In this limit, quantum state (wavefunction) does not change

but again we are in a different gauge, so need to apply
  the large gauge transformation to go back to the original 
gauge

|Ψ0〉 → |Ψ0〉 → Ux|Ψ0〉



Energy Gain in Sudden Flux Insertion
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1

V

(

〈Ψ0|Ux

†H(0)Ux|Ψ0〉 − 〈Ψ0|H(0)|Ψ0〉
)

=
1

V
〈Ψ0|

[

H(Ax =
Φ0

Lx

)−H(0)

]

|Ψ0〉

jx(t) ∼

∞
∑

n=1

1

n!

∫

t

0

. . .

∫

t

0

σ
(n)(t− t1, . . . , t− tn)

(

Ax

T

)n

dt1dt2 . . . dtn

∼

σ
(n)(0, 0, . . . , 0)

2n

(

Ax

T

)n

tn

1

V
∆E =

1

V

∫
T

0

〈
∂H

∂t
〉 dt =

Ax

T

∫
T

0

jx(t) dt

∼

σ
(n)(0, 0, . . . , 0)

2n
1

n+ 1

(

Ax

T

)

n

T→0

cf.) LSM
variational
energy



Non-linear f-Sum Rules
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σ(n)(0, 0, . . . , 0)

2n
= 〈Ψ0|

∂n+1H(Ax)

∂Ax

n+1

∣

∣

∣

∣

Ax=0

|Ψ0〉

instantaneous response in real-time

=

∫
∞

−∞

dω1

2π

∫
∞

−∞

dω2

2π
. . .

∫
∞

−∞

dωn

2π
σ
(n)(ω1,ω2, . . . ,ωn)

[frequency space representation]

Watanabe-M.O.  / Watanabe-Liu-M.O. 2020
cf.) Shimizu 2010, Shimizu-Yuge 2011

Comparing both  sides, we obtain the identity  



Example: Tight-Binding Model
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Numerical Check
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Summary
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Two general formulas for non-linear conductivity

σ(n)(0, 0, . . . , 0)

2n
= 〈Ψ0|

∂n+1H(Ax)

∂Ax

n+1

∣

∣

∣

∣

Ax=0

|Ψ0〉

f-sum rules (instantaneous response = ω-integral)

D
(n) =

1

V

∂n+1E0

∂Ax

n+1
(Ax)

∣

∣

∣

∣

Ax=0

“Kohn formulas” for non-linear Drude weights
                       (long-time response = 1/ω pole)

energy gain by sudden flux insertion

energy gain by adiabatic flux insertion

more general results are given in arXiv:2003.10390 & arXiv:2004.04561 


