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How can systems that have classical first-order transitions

                     display quantum criticality ??

 Can metals near polar quantum critical points host novel

                     strongly correlated phases ??

 Many more questions for future research
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Classical and Quantum Phase Transitions



Quantum Critical Endpoints

Grigera et al. Science (2001) Brando et al. RMP (2016)

1st order

2nd order

ũ = −u0 + ∆u

ũ < 0

ũ > 0
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Experimental Motivation:  Ferroelectrics

Classically First-Order !

Jona and Shirane, FE Crystals (1962)

McWhan et al., J.Phys. C (1985)
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S. Rowley, L. Spalek, R. Smith, M. Dean, M. Itoh, J.F. Scott, G.G. Lonzarich and S. Saxena, 
Nature Physics 10, 367-72 (2014) !7



PC, Lonzarich, Rowley and Scott, ROPP (2017)

Quantum Criticality with Classical First-Order Transitions ?
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(Classical) Larkin-Pikin Mechanism

Interaction of strain with fluctuating critical order parameter

Diverging Specific Heat in a Clamped System

1st Order Transition in the Unclamped System

κ <
∆CV

Tc

✓

dTc

dlnV

◆2

LP Criterion for 1st Order Transition

Coupling of the uniform strain 
     to the energy density

Macroscopic Instability of the
         Critical Point

Discontinuous Phase Transition

κ
−1 = K−1

− (K +
4

3
µ)−1

κ ∼ K
c
2

L

c2
T

Shear Strain Crucial

   Generalization for the Quantum Case   ???
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(A. I. Larkin and S. Pikin, Sov. Phys. JETP 29, 891 (1969))



Overview of the Classical Larkin-Pikin Mechanism
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S[ψ, u] = SA + SB + SI =
1

T

Z
d3x(LA[ψ] + LB [u] + LI [ψ, e]).

Simplest case:  Isotropic elasticity and scalar order parameter

Compressible system where order parameter            is coupled to the volumetric strain (~x)

LA[ψ, a, b] =
1

2
(∂µψ)

2 +
a

2
ψ2 +

b

4!
ψ4,

Physics of the Order Parameter 

a ∝

T − Tc

Tc

and b > 0

Sole Contribution for the Clamped Case 



Overview of the Classical Larkin-Pikin Mechanism
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S[ψ, u] = SA + SB + SI =
1

T

Z
d3x(LA[ψ] + LB [u] + LI [ψ, e]).

LB [u] =
1

2

✓

K −

2

3
µ

◆

e2
ll
+ 2µe2

ab

�

− σabeab

eab(~x) =
1

2

✓

@ua

@xb

+
@ub

@xa

◆

σab ua(~x)

Describes Elastic Degrees of Freedom 

External Stress

Strain Tensor

Local Atomic Displacement

ell(x) = Tr[e(~x)] Volumetric Strain 

Simplest case:  Isotropic elasticity and scalar order parameter

Compressible system where order parameter            is coupled to the volumetric strain (~x)



Overview of the Classical Larkin-Pikin Mechanism
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S[ψ, u] = SA + SB + SI =
1

T

Z
d3x(LA[ψ] + LB [u] + LI [ψ, e]).

Simplest case:  Isotropic elasticity and scalar order parameter

Compressible system where order parameter            is coupled to the volumetric strain (~x)

LI [ψ, e] = λellψ
2

Interaction between the Volumetric Strain and the Squared
                Amplitude of the Order Parameter 

λ =

✓

dTc

dlnV

◆

Coupling Constant  Associated with
  the Strain-Dependence of Tc 

ψ2
“Energy Density” of the Order Parameter



Overview of the Classical Larkin-Pikin Mechanism
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Simplest case:  Isotropic elasticity and scalar order parameter

Compressible system where order parameter            is coupled to the volumetric strain (~x)

S[ψ, u] = SA + SB + SI =
1

T

Z
d3x(LA[ψ] + LB [u] + LI [ψ, e]).

Strain -“Energy Density”
              Coupling

Physics of the Order Parameter 

Describes Elastic Degrees of Freedom 

Z =

Z
D[ψ]

Z
D[u] e−S[ψ,u]

−→ Z =

Z
D[ψ]e−S[ψ]

Key Idea:  Integrate out Gaussian Elastic Degrees of Freedom 



Elastic Degrees of Freedom Gaussian, but Integration Must be Performed Carefully
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    Special Role of Boundary Normal Modes  

    (Wavelength Comparable to System Size)
(λ ∼ L)

“Elastic Anomaly”:  Integration over Boundary Modes Generates a Non-Local Order

 Parameter Interaction  in the Bulk Action

    Destroys Locality of Original Theory and Paradoxically is Independent of 

          Detailed Boundary Conditions (as a Bulk Term in the Action) 



Elastic Degrees of Freedom Gaussian, but Integration Must be Performed Carefully

eab(~x) = eab +
1

V

X

~q 6=0

i

2
[qaub(~q) + qbua(~q)]e

i~q·~x,

Boundary  Mode Fluctuating Atomic Displacements
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   In a system with Periodic Boundary Conditions (Larkin-Pikin choice)

{a, b} ∈ [1, 3]

ua(q) ua(x)Fourier Transform of 

V = L
3

~q =
2⇡

L
(l,m, n) l,m, n Integers 



Elastic Degrees of Freedom Gaussian, but Integration Must be Performed Carefully

eab(~x) = eab +
1

V

X

~q 6=0

i

2
[qaub(~q) + qbua(~q)]e

i~q·~x,

Boundary  Mode Fluctuating Atomic Displacements
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   In a system with Periodic Boundary Conditions (Larkin-Pikin choice)

 Formally solid forms a 3-torus

I
eab(x)dxb = eab

I
dxb = ba

Burger’s vector of the

enclosed defects

 Boundary Modes of the Strain have a Topological Character



Integration over the Strain Fields
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S[ψ] = SA[ψ, a, b] +∆S[ψ]

e
−∆S[ψ] =

Z
D[u]e−(SB+SI)

Correction to the Action of the Order Parameter

         where 



The resulting action
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b∗ = b−
12λ2

K +
4

3
µ

S[ψ] = SA[ψ, a, b
⇤]−

λ2V

2T

✓

1

K
−

1

K + 4

3
µ

◆

1

V 2

Z

d3x

Z

d3x0 ψ2(x) ψ2(x0)

�

Distance-Independent Interaction 

Between the Energy Densities of  

the Order Parameter

This term drives a non-perturbative

first order transition at arbitrarily

small coupling λ

Perturbative

Renormalization  of

the Short-Range Interaction

O(λ2)



The resulting action
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S[ψ] = SA[ψ, a, b
⇤]−

λ2V

2T

✓

1

K
−

1

K + 4

3
µ

◆

1

V 2

Z

d3x

Z

d3x0 ψ2(x) ψ2(x0)

�

Distance-Independent Interaction 

Between the Energy Densities of  

the Order Parameter

This term drives a non-perturbative

first order transition at arbitrarily

small coupling λ

Prefactor Only Nonzero for Finite Shear Modulus

         (Solids but not Liquids)

µ 6= 0

κ
−1

q = 0 Strain

Only 
Present
for the 
Clamped 
System

Subtly from
finite q elastic
fluctuations.
Residual
repulsion due
 to “boson
hole” in the
longitudinal
interactions

Present for
Clamped 
System



The resulting action

!20

S[ψ] = SA[ψ, a, b
⇤]−

λ2V

2T

✓

1

K
−

1

K + 4

3
µ

◆

1

V 2

Z

d3x

Z

d3x0 ψ2(x) ψ2(x0)

�

Ψ
2
≡



1

V

Z

d
3
x ψ2(x)

�

Volume Average of the Energy Density

S[ψ] = SA −

λ2V

2Tκ
(Ψ2)2

        Intensive Variable

δΨ
2
= Ψ

2 � hΨ2i

h(δΨ2)i ⇠ O

✓

1

V

◆



The resulting action
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S[ψ] = SA[ψ, a, b
⇤]−

λ2V

2T

✓

1

K
−

1

K + 4

3
µ

◆

1

V 2

Z

d3x

Z

d3x0 ψ2(x) ψ2(x0)

�

S[ψ] = SA −

λ2V

2Tκ
(Ψ2)2

�

Ψ
2
�2

=
�

hΨ2i+ δΨ
2)
�2

= 2Ψ2hΨ2i � hΨ2i2 +O(1/V )
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Set of Self-Consistent Equations

S[ψ] =
1

T

Z

d3x



LA(ψ, a)�
λ2

κ
hΨ2i ψ2(x)

�

+
λ2V

2κ
hΨ2i2

hΨ2i =

R
dψ Ψ

2
e
−SA[ψ]

R
dψ e−SA[ψ]

.

∂F̃ [φ]

∂φ
= 0 =)

⇥

λhΨ2i+ κφ
⇤

V = 0.

Self-Consistency Imposed by Stationarity of the Free Energy 

Introduce Auxiliary “Strain” Variable φ = �
λhΨ2i

κ

e
−

F̃ (φ)
T =

Z
Dψ e

−S[ψ,φ]

S[ψ,φ] =
1

T

Z

d3x
h

LA(ψ, a) + λφψ2 +
κ

2
φ2

i
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Set of Self-Consistent Equations

S[ψ] =
1

T

Z

d3x



LA(ψ, a)�
λ2

κ
hΨ2i ψ2(x)

�

+
λ2V

2κ
hΨ2i2

hΨ2i =

R
dψ Ψ

2
e
−SA[ψ]

R
dψ e−SA[ψ]

.

Integration out of order parameter fluctuations κ̃ = κ−∆κ

Integration out of elasticity variable φ

Introduce Auxiliary “Strain” Variable φ = �
λhΨ2i

κ

e
−

F̃ (φ)
T =

Z
Dψ e

−S[ψ,φ]

S[ψ,φ] =
1

T

Z

d3x
h

LA(ψ, a) + λφψ2 +
κ

2
φ2

i
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S[ψ,φ] =
1

T

Z
d3x [LA(ψ, a+ 2λφ)] +

κV

2
φ2

a → x = a+ 2λφ

Review of the Original Larkin-Pikin argument

Free energy of the clamped system 

e
−

F (a)
T =

Z
D[ψ] e−SA[ψ,a]

Free energy of the unclamped system 

F̃ [φ, a] = F [x] +
κV

2
φ2

x = a+ 2λφ Shift of tuning parameter due to energy

                     fluctuations 
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1

V

∂F

∂x
=

hΨ2i

2

φ = �
λhΨ2i

κ
= �

2λ

V κ

✓

∂F

∂x

◆

⌘ �
2λ

V κ
F

0[x]

f̃ ≡

2λ

V κ
F̃ , f ≡

2λ

V κ
F

Two equations describing the unclamped system

f̃ = f [x] + λ (f 0[x])
2

a = x+ 2λf 0[x]

  that must be solved self-consistently

✓

a ∝

T − Tc

Tc

≡ t

◆
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Continuous Transition in the Clamped System

f ∝ −|t|2−α (α > 0)

t = x+ 2λf 0[x]

= x− 2λ(2− α)|x|1�αsgn(x)

t

x

1st Order Phase Transition

for the Unclamped System !!

f
∼

t

1st 

Non-Monotonic



T = 0 case
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d > 4 α = 0(d = dspace + z)

f ∝ −|x|2 t = x+ 2λf 0

= x(1− 4λ)

Monotonic

Continuous

d = 4− ✏Marginal Case

fsing =
1

2
Ax2

lnx

t = x+ 2λAx lnx
√

e Weakly Non-Monotonic

t = 0 ∆f ≡ f2(x = |x+|)− f1(x = 0) ∝ e−
1

λ

Very Weak First Order Transition



Generalized Larkin-Pikin Results
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New Lattice-Sensitive

Settings for Exploration

of Exotic Quantum Phases

PC, P. Coleman, M.A. Continentino and G.G. Lonzarich, arXiv 1805.11771

Experimental Signatures

Elastic Anisotropy ??

Domain Dynamics??

Disorder ??

Metallic Systems ??
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 Multiband Quantum Criticality of Polar Metals

P.A. Volkov and PC, PRL 124, 237601 (2020)

T
<φαφβ>

Polar

(a) (b)

FL

NFL

NFL
marginal

3D

3D

2D

pressure/doping/strain,etc.

(i)

(ii)

(iii)

Novel phases in quantum critical
polar metals ??

Pavel Volkov (Rutgers)
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 Polar Metal ?

Rischau et al., Nature Physics 134:  643 (2017)

Critical boson = Transverse Optical Phonon

q ≈ 0
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 Polar Metal ?

  Doped Ferroelectric

Screening of Dipole Moments

Inversion Symmetry-Breaking Transition Remains

        (Anderson and Blount PRL 12, 217 (1965)
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 Polar Metal ?

Rischau et al., Nature Physics 134:  643 (2017)

Intrinsic and “Engineered”
      Polar Metals Exist

Search for Weyl semimetals

         Polar Semimetals

        Chemical Tuning of Tc

        Novel Metallic Quantum
                 Criticality ???
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 Challenge:  Strong Electronic Coupling to the

                      Critical Polar Mode ?

Coulomb Interactions

(in weak screening limit lead to LO/TO splitting)

Yukawa Coupling

HY = λ

Z
drϕ(r)c†(r)c(r

  known to produce strong correlations for other QCPs

 Polar QCP  ??
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Yukawa Coupling to the Polar Mode

How do the electrons couple to an inversion
    symmetry-breaking field?

Wanted:  Fermionic bilinear that breaks 
              Inversion Symmetry 
     (but not Time-Reversal Symmetry)

Single Conduction Band (without SOC)

Hcoupling = λ

Z
dk ϕ(k) Ôi(k)

Ô(k) = ĉ
†
k
f0(k)ĉk P, T → f0 even

No ISB without TRSB !!

Yukawa Coupling to the Polar Mode
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Yukawa Coupling to the Polar Mode

    Polar Mode Couples to an Interband Bilinear
                       (no SOC required)

f i

a(b)(k) keven (odd)

(different parity
    bands)

(same parity
    bands)

H
(a)
coupl = λ

X

i,q,k

f i
a(k)ϕ

i
qc

†

k+q/2σ1ck−q/2, P ∼ σ3

H
(b)
coupl = λ

X

i,q,k

f i
b(k)ϕ

i
qc

†

k+q/2σ2ck−q/2, P ∼ σ0
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Yukawa Coupling to the Polar Mode: Physical Mechanism

    (assuming bands arise from two distinct orbitals)

ϕ
i
= 0

ϕ
i 6= 0

Different Parity Same Parity

Interorbital Hopping Changes in Both Cases  !!



!37

Gapless Particle-Hole Excitations Needed to Drive
                   Novel Metallic Behavior

Band Crossings Close to the
            Fermi Level !!

Wang et al. PRB 98, 20112 (2018)
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Emergent Metallic Behavior in Three Generic Cases

3D Nodal Line

2D Nodal Points

     3D Weyl Points

(with Broken Time-Reversal

         Symmetry)

Coulomb interactions:       anisotropy in (i) and (ii)

                                          gaps the the longitudinal mode (iii)
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 Multiband Quantum Criticality of Polar Metals

P.A. Volkov and PC, PRL 124, 237601 (2020)

T
<φαφβ>

Polar

(a) (b)

FL

NFL

NFL
marginal

3D

3D

2D

pressure/doping/strain,etc.

(i)

(ii)

(iii)

Novel phases in quantum critical
polar metals ??

Pavel Volkov (Rutgers)

 Nodal multiband metals near polar QCPs
            promising settings

      Experimental Signatures
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Summary and Many Open Questions

A Flavor for Two Current Research Projects

Quantum Annealed Criticality

Strongly Correlated Phases in Metals

         Close to a Polar QCP

T-Dependent Transport ??

Superconductivity Mechanism ??

Multiferroic Quantum Criticality ??
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