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Outline

I magnetism, frustration and spin liquid behaviour

I modelling spin liquids: general overview

I quasiparticle excitations: 6-vertex and 8-vertex model

• classical behaviour: deconfinement, fractionalisation,
dynamical constraints and entropic interactions

• quantum behaviour: fractional statistics and dual
quasiparticles → toric code and quantum spin ice

I quantum spin liquids at finite temperature
(a prelude to the second talk)

I conclusions



Conventional Magnetism vs Spin Liquids

T / J~ 1

order “trivial” disorder

T / J~ 1

order disorder?

Tc

“trivial”: T & J ⇒ high-T expansion holds (〈SiSj〉 ∼ −Hij/T )

frustration: inability to minimise locally all energy terms⇒ Tc � J

H = J
∑

ij SiSj (triang. Ising AFM)
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Conventional Magnetism vs Spin LiquidsT / J~ 1

order “trivial” disorder

T / J~ 1

order disorder?

T  /J << 1c

I ∼ 1 is typically a crossover (Schottky anomaly)

I no long range order

I non-trivial spin correlations (T < J ⇒ 〈SiSj〉 ∼ −Hij/T )

−→ spin liquid



Modelling (classical) spin liquids

example: nn Ising AFM on triangular lattice

2:1 triangles vs 3:0 triangles

energy difference: ∆ ∼ J

⇒ projects onto mostly 2:1 configurations for T . ∆



Modelling (classical) spin liquids

generally: H ∼ H∆ + Hδ

I leading contribution (H∆) projects onto subset of
configuration space (no spontaneous symmetry breaking) for
T . ∆

I possible subleading contributions (Hδ) cause ordering for
T . δ � ∆

(triang. nn Ising AFM: Hδ = 0)

T / ~ 1

order disorderSL

/    << 1D
d D



Effective dimer description

� for T . ∆, mostly 2:1 triangles

� ferro bonds equivalent to dimers

on dual honeycomb lattice

leading to:

I extensive degeneracy

I non-trivial correlations



Emergent gauge symmetry and dipolar correlations

A

B
� dimer = flux 2 from A to B

� no-dimer = flux 1 from B to A

� dimer constraint = divergenceless

condition

−→ emergent gauge field Henley AR 2010

⇒ 2D dipolar correlations: 〈flux flux〉 ∼ 〈dimer dimer〉 ∼ 〈S S〉



Elementary excitations of H∆

for convenience:
Ising model on
bonds of square
lattice
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Six-vertex vs eight-vertex model

I extensively degenerate

Pauling’s entropy estimate:
2N spins, N sites

n out of 16 (n = 6, 8) minimal energy configurations per site

S ∼ ln
[
22N

(
n
16

)N] ∼ sn N

I unusual correlations

6-vertex model:
σi = ±1 ⇔ flux from A to B (B to A)

⇒ divergenceless condition and dipolar correlations [Isakov PRL 2004]

8-vertex model:
plaquette flips preserve minimal energy

⇒ zero-range corr. 〈σiσj〉 = 0, ∀i 6= j but topological properties



Excitations in the 8-vertex model

spin flip on ground state

⇓
two defects:

∏
i∈s σi = −1
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I spins next to defect flip at no energy cost (hop or annihilate)

I trivially deconfined

I elementary excitations are single defective sites

I lattice gas of (RW) particles that pair create or annihilate
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Excitations in the 8-vertex model
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Excitations in the 6-vertex model

spin flip on ground state

⇓
two defects:

∑
i∈s σi = ±1
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I spins next to defect flip at no energy cost only along
alternating sign paths (+−+−+− . . .)

I elementary excitations are single defective sites (deconfined)

I constrained gas of particles that pair create or annihilate
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Excitations in the 6-vertex model

spin flip on ground state
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Excitations in the 6-vertex model (gauge flux rep.)

spin flip on ground state

⇓
pair of oppositely charged
defects: sinks (3i1o) and
sources (3o1i) of gauge flux

I defects move freely along oriented arrow paths

I close interplay: spins determine how defects move; defect
motion rearranges spins

I lattice gas of gauge charges → spins mediate Coulomb int.
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Parenthesis: entropic Coulomb interaction

I no energetic interactions between defects

I yet probability P(R) of two oppositely charged defects R
apart ∼ exp[Cd(R)] with Coulomb potential Cd(R) in d dim.

I ⇒ entropic Coulomb interaction −T Cd(R)C. CASTELNOVO, R. MOESSNER, AND S. L. SONDHI PHYSICAL REVIEW B 84, 144435 (2011)
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FIG. 13. (Color online) (Top panel) Distribution of distances per
lattice site between two monopoles in a spin-ice configuration of 16 ×
L3 spins, L = 64 (top panel, red curve). The expected form due to the
entropic Coulombic interaction is P ∼ exp(Eent

nn /T R) and the solid
yellow line is the linear fit of ln P (R) as a function of 1/R. (Bottom
panel) Finite-size scaling of the nearest-neighbor entropic interaction
Eent

nn /T vs. the inverse system size 1/L, L = 16, 32, 48, 64, 80, 100.
The dashed black line and shaded cyan region are a guide to the
eye for a reasonable L → ∞ extrapolation and confidence interval,
leading to Eent

nn /T % 0.375 ± 0.015.

FIG. 14. (Color online) Two examples of how the available
hopping processes depend on the direction of the applied field on
a square lattice: a 45◦ field (left) and a 90◦ field (right).

where ! is the characteristic microscopic length scale, V is
the potential difference for a single hopping process, 1 is the
probability to hop in the direction of the field, and exp(−βqV )
is the probability to hop in the opposite direction.

Note that, on a lattice, there can be several inequivalent
forward and backward hoppings, depending on the direction
of the field. For example, while a 45◦ field applied to
charged particles living on a square lattice is described
straightforwardly by the above equation (with ! = a/

√
2, a

being the lattice spacing), a 90◦ field on the same lattice allows
for a forward, a backward, and two perpendicular hopping
processes (see Fig. 14). One, therefore, needs to average over
all of them to obtain the correct value of #x.

For convenience, we choose to define the mobility ν as

#x/a

τ0
= !

aτ0

1 − e−βqV

1 + e−βqV
(C2)

≡ ν qEa, (C3)

for small values of the applied field E. Here a is the
(dimensionful) lattice constant and τ0 is the microscopic time
scale for a single MC step. At large temperatures with respect
to the field strength, one can expand the exponentials and arrive
at the expression

ν = 1
τ0

1
qEa

!

a

1 − e−βqV

1 + e−βqV
(C4)

= 1
τ0

!

a

V/(Ea)
2kBT

+ O
[

(βV )2

qEa

]
. (C5)

For example, the case of a generic field direction on the
anisotropic square lattice, with lattice constants a and b, gives

ν = 1
τ0

1
qEa2

a cos θ + b sin θ − a cos θe−βqEa cos θ − b sin θe−βqEb sin θ

1 + 1 + e−βqEa cos θ + e−βqEb sin θ
% 1

τ0

1
4kBT

a2 cos2 θ + b2 sin2 θ

a2
+ O(β2E). (C6)

If the lattice is isotropic (a = b) the mobility is independent of the direction of the applied field,

ν % 1
τ0

1
4kBT

+ O
(
β2E

)
. (C7)

The mobility of monopoles on an isotropic diamond lattice, of lattice constant ad , with respect to a generic field direction ê,
can be computed in a similar way, with the additional care that there are now two inequivalent sublattices. With respect to one

144435-12

d = 3, Cd(R) ∼ 1/R CC et al. PRB 2011



Low temperature (classical) dynamics

behaviour controlled by sparse defect motion:

I 8-vertex: 2D random walk + pair creation/annihilation events
(aka reaction-diffusion process)

I 6-vertex: constrained lattice gas motion + entropic Coulomb
interactions

Toussaint et al. J. Chem. Phys. 1983

Ginzburg et al. PRE 1997

Ryzhkin et al. JETP 2005, EPL 2013

CC et al. PRL 2010, PRB 2019



Quantum spin liquids

H = H∆ + Hδ where Hδ ∼ Hdefect int. +Hdefect hopping

I neglect Hdefect int. for simplicity

I hopping t . ∆ → defect dynamics (first order) + ‘ground
state’ dynamics (perturbatively: ∆ ∼ t (t/∆)n)

ring
exchange

D



Quantum spin liquids

t

disordered
paramagnet

energy

?

DD
temp.

classical SLquantum SL

0 << t

energy

0 D

2D

t

~ 

~ t two-defect sector

zero-defect sector



Intermediate regime (∆ . T < t)

I intermediate between classical and quantum behaviour

I highest temperature where precursor QSL behaviour may
appear (→ experiments)

I underlying spins act as self-generated disorder in defect
motion → localisation

I general framework hitherto unavailable...

(but interesting case studies)
arXiv:1909.08633
arXiv:1911.06331
arXiv:1911.05742
arXiv:2005.03036

→ next talk (Thu 25th June, 16:30)



Quantum 8-vertex model (aka toric code in a field)
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H∆ = −∆
∑
s

∏
i∈s

σzi

Ht = −t
∑
i

σxi

⇒ H∆ = −∆
∑
p

∏
i∈p

σxi , ∆ ∼ t4

∆3

H∆ + H∆ = toric code Kitaev 2003

I H∆ favours
∏

i∈s σ
z
i = +1

I H∆ favours
∏

i∈p σ
x
i = +1

I they commute and can be simultaneously satisfied



Quantum 8-vertex model (aka toric code in a field)

elementary excitations:

I star defects (
∏

i∈s σ
z
i = −1, cost ∼ ∆)

I plaquette defects (
∏

i∈p σ
x
i = −1, cost ∼ ∆)

point-like, deconfined bosons, with
mutual semionic statistics s

p

=  -
s

p

t DD temp.0 {

I star defects: sparse and hop coherently

I plaquette defects: thermally populated (dense and incoherent)



Quantum 8-vertex model (∆ . T < t)

incoherent superposition of plaquette defects (ensemble average)

+ coherent star defect hopping

p

p

p p

p p

p

tight-binding charges in a random π-flux background:
Anderson localisation of emergent particles

(+ thermodynamic response due to mutual statistics)



Quantum 6-vertex model (aka quantum spin ice in a field)

+ +
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s

i p

H∆ = −∆
∑
s

(∑
i∈s

σzi

)2

Ht = −t
∑
i

σxi

⇒ H∆ = −∆
∑
p

(
σ+

1 σ
−
2 σ

+
3 σ
−
4 + h.c.

)
,

(∆ ∼ t4/∆3)

H∆ + H∆ = quantum (square) spin ice Hermele et al. 2004

I H∆ favours
∑

i∈s σ
z
i = 0

I H∆ favours +−+− (‘flippable’) plaquettes

I they do not commute and cannot be simultaneously satisfied



Quantum 6-vertex model (aka quantum spin ice in a field)

elementary excitations:

I star defects (
∑

i∈s σ
z
i = ±1, cost ∼ ∆, gauge charge ±1)

I plaquette dynamics promotes gauge symm. to QED

I plaq. defects: dual charges (cost ∆, not trivially related to H∆)

I gapless photons Hermele et al. 2004

point-like, deconfined quasiparticles, with electromag. interactions
(and not immediately obvious statistics)

t DD temp.0 {

I star defects: sparse and hop coherently

I dual charges and photons: thermally populated



Quantum 6-vertex model (∆ . T < t)

working assumption: incoherent superposition of underlying spins
(ensemble average)

+ coherent star defect hopping

constrained dynamics ↔ tight-binding on a random network ↔
(emergent) configurational disorder



Conclusions

I frustration in magnetic systems opens a window into unusual
and interesting spin liquid phases

I powerful effective modelling in terms of interplay between spin
(GS) vacuum and quasiparticle excitations

• classical: emergent symmetries, fractionalisation,
reaction-diffusion processes and entropic interactions

• quantum: dual quasiparticles and non-trivial statistics

I tease: interesting intermediate temperature regime with
potential precursor signatures of QSL behaviour at lower
temperatures


