
I work in algebraic topology, specifically stable homotopy theory. Some of the relevant keywords
are model categories, spectra, Bousfield localisation, A∞-algebras, homological algebra and homo-
topical algebra. If you like the idea of working on the algebraic side of algebraic topology, here is
a brief overview of the topics I can offer projects in, including some further reading suggestions. If
you have any questions or would like to hear more, please drop me an email!

1 Model categories and rigidity

Homotopy

A central notion in topology is that of homotopy. Two maps f, g : X −→ Y of topological spaces
are homotopic if there is a homotopy between them, i.e. a continuous map H : [0, 1] ×X −→ Y
such that H(0,−) = f and H(1,−) = g. We can think of the homotopy as a way of deforming f
into g continuously in finite time.

On the other hand, in algebra there is also the definition of chain homotopy. Two chain maps
of chain complexes f, g : (C∗, dC) −→ (D∗, dD) are said to be chain homotopic if there are maps
Hn : Cn −→ Dn+1 such that fn − gn = dD ◦ Hn + Hn−1 ◦ dC . But why does this deserve the
name “homotopy”? Where is the unit interval or the continuous deformation? The world of model
categories tells us that these two definitions do not just “morally” agree somehow but that they
are in fact special cases of a more generalised notion of homotopy.

Model categories and a more general notion of homotopy

Roughly speaking, a model category is a category with a sensible notion of homotopy between
morphisms. In a model category, there are distinguished classes of morphisms called fibrations,
cofibrations and weak equivalences satisfying a strong but natural set of axioms involving retracts,
factorisation and lifting properties. You might have heard of the definition of fibrations and cofi-
brations in topology- in fact, the model category definition says that those generalised fibrations
and cofibrations are supposed to satisfy exactly the conditions of e.g. Serre fibrations and cofibra-
tions in topology. In this example of topological spaces, the weak equivalences play the role of the
weak homotopy equivalences.

Those axioms let us define what homotopy between morphisms is without having to have a “unit
interval” in our category. Examples of categories with such a model structure involve, as mentioned
earlier, topological spaces and chain complexes. In chain complexes, the weak equivalences are the
quasi-isomorphisms, i.e. those chain maps that induce an isomorphism in homology.

The homotopy category

With a model category C, one can form its homotopy category Ho(C). Its objects are the objects
of C but its morphisms are the homotopy classes of morphisms in C, using the notion of homotopy
derived from the model category axioms. So a special case would be the category of topological
spaces together with homotopy classes of continuous maps. The homotopy category might be in
some ways easier to study than the original underlying model category, but one loses information
when passing to homotopy level.



Uniqueness and other open questions

Here is where the question of rigidity can be asked: how much of the underlying model structure
can be recovered from just the structure of the homotopy category alone? Are there seemingly
different categories which model the same homotopy category? And if yes, how much of their
“higher homotopy structure” still agrees and why? Usually, algebraic model categories behave
different from the topological example, but how exactly?

There are some interesting examples which have been studied in the last decade, but these are still
rare and sometimes mysterious. In the future, hopefully more can be discovered about “rigidity”,
algebraic models, exotic models, uniqueness of underlying model structures and their relations. A
PhD project in this area of algebraic topology could contribute to this fascinating topic.

Reading

Introductory:

W.G. Dwyer and J. Spalinski: Homotopy theories and model categories. Handbook of algebraic
topology, 73126, North-Holland, Amsterdam, 1995.

More advanced:

B. Shipley: Rigidity and algebraic models for rational equivariant stable homotopy theory (talk
notes), 2011.

http://homepages.math.uic.edu/ bshipley/banff.17.6.pdf

Research article:

S. Schwede: The stable homotopy category has a unique model at the prime 2, Advances in
Mathematics, 164(1), 24–40, 2001.

2 A∞-algebras

The basics

An associative algebra is a module over a ring (e.g. a vector space) A that is equipped with an
associative multiplication µ : A ⊗ A −→ A. (Usually, we just write x · y for µ(x ⊗ y).) Standard
examples of such associative algebras include the polynomial algebra R[X] over a ring R or the
algebra of square matrices over a ring.

Because we ask for the multiplication to be associative, there is only one way of multiplying n
elements x1, ..., xn of A as the associativity tells us that the “bracketing” of the product does not
matter. An A∞-algebra is a kind of algebra where the bracketing does matter. To be more precise,
for each number n there is a multiplication map

mn : A⊗ ...⊗A −→ A



which says how to multiply n elements. Furthermore, when composed those multiplication maps
have to satisfy the relation ∑

r+s+t=n

(−1)rs+tmr+1+t(1
⊗r ⊗ms ⊗ 1⊗t) = 0 (1)

for all possible numbers of input n. As an exercise you can try and work out that an associative
algebra is an A∞-algebra with mi = 0 for i 6= 2. (Hint: in that case, the above relation reduces
to the associativity condition.) Similarly, a chain complex is an A∞-algebra with mi = 0 for i 6= 1
and a differential graded algebra is an A∞-algebra with mi = 0 for i 6= 1, 2.

A∞-algebras and loop spaces

So the definition of an A∞-algebra generalises the definition of an associative algebra. While the
above relation looks quite random at first glance, it in fact has some strong geometric roots. One
of the motivations for this definition is to describe the loop space ΩX of a topological space X in
an algebraic way. (More specifically, the singular chain complex of a loop space is an A∞-algebra.)

If X is a topological space with distinguished base point ∗, then its loop space is defined as the set
of all closed loops in X

ΩX = {γ : [0, 1] −→ X | γ(0) = γ(1) = ∗}.

(This is not just a set- it becomes a topological space via the compact-open topology.) This space
almost has a multiplication map � : ΩX ×ΩX −→ ΩX given by the concatenation of loops. Why
almost? If you concatenate two loops of length 1, the result is a loop of length 2- you have to
rescale the result to get a loop of length 1 again by going through each of the two parts at twice
the speed. This “product” � is not associative: this rescaling means that ((γ1 � γ2) � γ3) and
(γ1 � (γ2 � γ3)) do not strictly agree but agree up to homotopy. This is a similar scenario to the
relation of the mn in the definition of an A∞-algebra: m2(1⊗m2) and m2(m2⊗1) may not strictly
agree but they agree up to some relation.

Derived A∞-algebras

For many useful results regarding A∞-algebras, one needs the assumption that A is not just a
module over a commutative ring but a vector space over a field. (Or, more weakly, one needs
the A∞-algebras to be “projective”, which is automatically the case if one works over a base field
rather than a ring.) This is rather awkward as many naturally occurring examples in topology
require the base ring to be Z or the p-local integers Z(p). To bypass these assumptions, derived
A∞-algebras have been developed recently.

The idea is that if an A∞-algebra is not projective, one can build in a projective resolution that
is compatible with the A∞-relation. This roughly means that if an object is not “nice” enough,
then one can replace it with another object that is sufficiently nice but will be much bigger. This
is why we do not give the definition of a derived A∞-algebra here but just say that it is a formula
much bigger than (1)!

Open questions

Because this formula is rather big, it can be hard to calculate actual examples with it. Also, it
would be interesting to find out more about how this structure of derived A∞-algebras is related



to other already well-known structures. For example, A∞-algebras and associative algebras are
closely related: A∞-algebras can be thought of a “resolution” of associative algebras in the above
sense- a relatively small formula is replaced by a bigger one that has nicer properties. Is something
similar true for derived A∞-algebras- i.e. is there a smaller, well-known structure that relates to
them like this? Can one also “derive” other structures, e.g. Lie algebras, to obtain a technique
that is applicable to more examples?

This field of “algebraic operads” (e.g. the study of algebraic structures and their relation to each
other) has gained a lot of momentum in the last decade because of its relations to algebra, topology
and geometry as well as modern category theory. Hence, there are many open questions relating
to existing results that can lead to an interesting project.
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More advanced:
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