Jump to accessibility statement Jump to content

Centre for astrophysics and planetary science

planetary science

Teaching 2020

The CAPS group provides the teaching for all of the Astrophysics and Planetary Science courses offered as part of the Physics and Astrophysics and Astronomy, Space Science and Astrophysics degree streams.

Below we outline these specific modules:

Taught Modules Credits

This module provides an introduction to astronomy, beginning with our own solar system and extending to objects at the limits of the universe. Straightforward mathematics is used to develop a geometrical optics model for imaging with lenses and mirrors, and this is then used to explore the principles of astronomical telescopes.

View full module details
15

Aims: To provide a basic but rigorous grounding in observational, computational and theoretical aspects of astrophysics to build on the descriptive course in Stage 1, and to consider evidence for the existence of exoplanets in other Solar Systems.

Telescopes and detectors:
Radio telescopes; detection of radio waves, heterodyne receivers, bolometers; Optical/NIR Telescopes and detectors; basic band gap theory; CCD cameras; bias, dark and flatfield calibration frames and data reduction; Stellar Photometry: Factors affecting signal from a stars; atmospheric absorption and scattering; Filters; UBV system; Colour Index as temperature diagnostic.

Basic stellar properties:
Mass measurements: Kepler's laws; solar system; binary stars; Visual binaries; Eclipsing binaries, Spectroscopic binaries; Introduction to the Hertzsprung-Russel diagram; spectroscopic parallax Introduction to star formation: Molecular clouds; Jeans criterion for collapse; Protostars; T-Tauri stars; Contraction onto the Main Sequence; Heyney and Hayashi Tracks; Stellar spectral classification: Basic stellar properties; back body radiation; stellar spectra; radiative transfer in stellar atmospheres

Stellar Structure:
equation of hydrostatic support; Virial theorem; central pressure; mean temperature; astrophysical time scales; equations of energy generation and transportation; convective vs radiative energy transport;

Extra Solar Planets
Detection Methods; Direct Detection; Radial velocity technique; Transit method; Microlensing and direct imaging; the population of exoplanet systems, Metallicity, Eccentricity, Core Accretion and Gravitational Instability

Galaxies:
Introduction to Galaxies; Hubble classification; the Milky Way; Spirals; Dark matter; Ellipticals; Irregulars; luminosity functions; Galaxy Clusters, distributions and physical processes; The Hubble Constant, Evolution, Mergers, Star Formation History; Quasars, Seyferts and Radio Galaxies

View full module details
15

This module aims to provide a basic understanding of the major subsystems of a spacecraft system and the frameworks for understanding spacecraft trajectory and orbits, including interplanetary orbits, launch phase and altitude control. Students will also gain an awareness of ideas on how space is a business/commercial opportunity and some of the management tools required in business.

View full module details
15

Aims: To provide, in combination with PH507, a balanced and rigorous course in Astrophysics for B.Sc. Physics with Astrophysics students, while forming a basis of the more extensive M.Phys modules.

Physics of Stars
equations of state for an ideal multiple chemical component star; degenerated stars, Nuclear reactions: PPI, PPII, PPIII chains; CNO cycle, Triple-alpha process; elemental abundances; energy transportation inside a star; derivation of the approximate opacity and energy generation models as function of density, temperature and chemical components; Solar neutrino problem; polytropic models applied to the equations of stars; Lane-Emden equation; Chandrasekhar mass; the Eddington Luminosity and the upper limit of mass; detailed stellar models; Post main sequence evolution of solar mass stars; Red Giants; White Dwarfs; Neutron Stars; Degenerate matter; properties of white dwarfs; Chandrasekhar limit; neutron stars; pulsars; Supernovae

General Relativity and Cosmology
Inadequacy of Newton's Laws of Gravitation, principle of Equivalence, non-Euclidian geometry. Curved surfaces. Schwarzschild solution; Gravitational redshift, the bending of light and gravitational lenses; Einstein Rings, black holes, gravitational waves; Brief survey of the universe; Olbers paradox, Cosmology, principles, FRW Metric, Laws of Motion & Distances, Friedmann equation, Scale Factor, Fluid equation, The Hubble Parameter, Critical Density parameter, Cosmological Constant parameter, Radiation-Matter-Dark Energy phases; The CMB, Temperature Horizons. Monopoles. Flatness problem. Hubble sphere, Inflation, Anisotropies, Polarisation Baryon Acoustic Oscillations, Secondary anisotropies; Baryosynthesis, Nucleosynthesis, Dark Matter observations, Lensing, Bullet Cluster, Dark Matter candidates, Cosmic Distance Ladder, Redshifts Galaxy surveys; Acceleration equation, Deceleration equation, Supernova as standard candles, Dark Energy, Einstein Field equations, Coincidence problem, The Cosmic Dark Ages & AGN Reionisation, High-z galaxies

View full module details
15

Aims:
To understand the nature of the solar activities, emissions and its properties, and its effects on the Earth's atmosphere and the near-Earth space within which spacecraft operate.
To have a familiarity with the modes of operation of remote sensing and communications satellites, understanding their function and how their instruments work.
To be familiar with the current space missions to Mars and their impact on our understanding of that planet.

Solar Terrestrial physics
The sun: Overall structure, magnetic field and solar activities.
Interactions with Earth: plasma physics, solar wind, Earth's magnetic field.
Ionospheric physics. Terrestrial physics: Earth's energy balance, Atmosphere. Environmental effects.

Remote Sensing
Modes of operation of remote sensing satellite instruments: radio, microwave, visual and infrared instruments. Basic uses of the instruments. Digital image processing, structure of digital images, image-processing overview, information extraction, environmental applications: UV radiation and Ozone concentration, climate and weather.

Martian Science
An overview of recent and future Mars space missions and their scientific aims. Discussions of the new data concerning Mars and the changing picture of Mars that is currently emerging.

View full module details
15

Space Astronomy:
Why use space telescopes; other platforms for non-ground-based astronomical observatories (sounding rockets, balloons, satellites); mission case study; what wavelengths benefit by being in space; measurements astronomers make in space using UV, x-ray and infra-red, and examples of some recent scientific missions.

Exploration of the Solar System:
Mission types from flybys to sample returns: scientific aims and instrumentation: design requirements for a spacecraft-exploration mission; how to study planetary atmospheres and surfaces: properties of and how to explore minor bodies (e.g. asteroids and comets): current and future missions: mission case study; how space agencies liaise with the scientific community; how to perform calculations related to the orbital transfer of spacecraft.

Solar System Formation and Evolution:
The composition of the Sun and planets will be placed in the context of the current understanding of the evolution of the Solar System. Topics include: Solar system formation and evolution; structure of the solar system; physical and orbital evolution of asteroids.

Extra Solar Planets:
The evidence for extra Solar planets will be presented and reviewed. The implications for the development and evolution of Solar Systems will be discussed.

Life in Space:
Introduction to the issue of what life is, where it may exist in the Solar System and how to look for it.

View full module details
15

Flight Operations: Control of spacecraft from the ground, including aspects of telecommunications theory.
Propulsion and attitude control: Physics of combustion in rockets, review of classical mechanics of rotation and its application to spacecraft attitude determination and control.
Impact Damage: The mechanisms by which space vehicles are damaged by high speed impact will be discussed along with protection strategies.
Human spaceflight: A review of human spaceflight programs (past and present). Life-support systems. An introduction to some major topics in space medicine; acceleration, pressurisation, radiation, etc.
International Space Station: Status of this project/mission will be covered.

View full module details
15

Interstellar Medium:
The major properties of the Interstellar Medium (ISM) are described. The course will discuss the characteristics of the gaseous and dust components of the ISM, including their distributions throughout the Galaxy, physical and chemical properties, and their influence the star formation process. The excitation of this interstellar material will be examined for the various physical processes which occur in the ISM, including radiative, collisional and shock excitation. The way in which the interstellar material can collapse under the effects of self-gravity to form stars, and their subsequent interaction with the remaining material will be examined. Finally the end stages of stellar evolution will be studied to understand how planetary nebulae and supernova remnants interact with the surrounding ISM.

Extragalactic astrophysics:
Review of FRW metric; source counts; cosmological distance ladder; standard candles/rods.
High-z galaxies: fundamental plane; Tully-Fisher; low surface brightness galaxies; luminosity functions and high-z evolution; the Cosmic Star Formation History
Galaxy clusters: the Butcher-Oemler effect; the morphology-density relation; the SZ effect
AGN and black holes: Beaming and superluminal motion; Unified schemes; Black hole demographics; high-z galaxy and quasar absorption and emission lines.

View full module details
15

Specialist Lab Module

Credits

This module focuses on the use of data processing and analysis techniques as applied to astronomical data from telescopes. Students will learn how telescopes and CCD cameras work, to process astronomical images and spectra and apply a range of data analysis techniques using multiple software packages. Students will also engage in the scientific interpretation of images and spectra of astronomical objects.

Use of Virtual Observatories for accessing astronomical databases and applying analysis tools to the data files retrieved (with particular emphasis on the Aladdin system); astronomical image formats.
Astrometry: Measuring coordinates of celestial objects from images.
Photometry: Determining magnitudes of variable stars and/or solar system bodies.
Spectroscopy: Determining spectral properties of variable stars and/or solar system bodies.
Image Analysis and Enhancement with AIP: Quantifying digital imagery in more detail than Aladdin, and applying a range of techniques (primarily through the use of image operators and convolution kernels).

View full module details

MPhys Reseach Project

This is a 20 week project working with real data to develop the research skills required for industry and postgraduate study Credits

Aims:
To provide an experience of open-ended research work.
To begin to prepare students for postgraduate work towards degrees by research or for careers in R&D in industrial or government/national laboratories.
To deepen knowledge in a specialised field and be able to communicate that knowledge orally and in writing.

Syllabus

All MPhys students undertake a laboratory, theoretical or computationally-based project related to their degree specialism. These projects may also be undertaken by Diploma students. A list of available project areas is made available during Stage 3, but may be augmented/revised at any time up to and including Week 1 of Stage 4. As far as possible, projects will be assigned on the basis of students' preferences – but this is not always possible: however, the project abstracts are regarded as 'flexible' in the sense that significant modification is possible (subject only to mutual consent between student and supervisor). The projects involve a combination of some or all of: literature search and critique, laboratory work, theoretical work, computational physics and data reduction/analysis. The majority of the projects are directly related to the research conducted in the department and are undertaken within the various SPS research teams.

View full module details
60